Hypersurfaces with constant k -th mean curvature in a Lorentzian space form

Shichang Shu

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 2, page 87-97
  • ISSN: 0044-8753

Abstract

top
In this paper, we study n ( n 3 ) -dimensional complete connected and oriented space-like hypersurfaces M n in an (n+1)-dimensional Lorentzian space form M 1 n + 1 ( c ) with non-zero constant k -th ( k < n ) mean curvature and two distinct principal curvatures λ and μ . We give some characterizations of Riemannian product H m ( c 1 ) × M n - m ( c 2 ) and show that the Riemannian product H m ( c 1 ) × M n - m ( c 2 ) is the only complete connected and oriented space-like hypersurface in M 1 n + 1 ( c ) with constant k -th mean curvature and two distinct principal curvatures, if the multiplicities of both principal curvatures are greater than 1, or if the multiplicity of λ is n - 1 , lim s ± λ k H k and the sectional curvature of M n is non-negative (or non-positive) when c > 0 , non-positive when c 0 , where M n - m ( c 2 ) denotes R n - m , S n - m ( c 2 ) or H n - m ( c 2 ) , according to c = 0 , c > 0 or c < 0 , where s is the arc length of the integral curve of the principal vector field corresponding to the principal curvature μ .

How to cite

top

Shu, Shichang. "Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form." Archivum Mathematicum 046.2 (2010): 87-97. <http://eudml.org/doc/37769>.

@article{Shu2010,
abstract = {In this paper, we study $n(n\ge 3)$-dimensional complete connected and oriented space-like hypersurfaces $M^n$ in an (n+1)-dimensional Lorentzian space form $M^\{n+1\}_1(c)$ with non-zero constant $k$-th $(k<n)$ mean curvature and two distinct principal curvatures $\lambda $ and $\mu $. We give some characterizations of Riemannian product $H^m(c_1)\times M^\{n-m\}(c_2)$ and show that the Riemannian product $H^m(c_1)\times M^\{n-m\}(c_2)$ is the only complete connected and oriented space-like hypersurface in $M^\{n+1\}_1(c)$ with constant $k$-th mean curvature and two distinct principal curvatures, if the multiplicities of both principal curvatures are greater than 1, or if the multiplicity of $\lambda $ is $n-1$, $\lim \limits _\{s\rightarrow \pm \infty \}\lambda ^k\ne H_k$ and the sectional curvature of $M^n$ is non-negative (or non-positive) when $c>0$, non-positive when $c\le 0$, where $M^\{n-m\}(c_2)$ denotes $R^\{n-m\}$, $S^\{n-m\}(c_2)$ or $H^\{n-m\}(c_2)$, according to $c=0$, $c>0$ or $c<0$, where $s$ is the arc length of the integral curve of the principal vector field corresponding to the principal curvature $\mu $.},
author = {Shu, Shichang},
journal = {Archivum Mathematicum},
keywords = {space-like hypersurface; Lorentzian space form; $k$-mean curvature; principal curvature; space-like hypersurface; Lorentzian space form; -mean curvature; principal curvature},
language = {eng},
number = {2},
pages = {87-97},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form},
url = {http://eudml.org/doc/37769},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Shu, Shichang
TI - Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 2
SP - 87
EP - 97
AB - In this paper, we study $n(n\ge 3)$-dimensional complete connected and oriented space-like hypersurfaces $M^n$ in an (n+1)-dimensional Lorentzian space form $M^{n+1}_1(c)$ with non-zero constant $k$-th $(k<n)$ mean curvature and two distinct principal curvatures $\lambda $ and $\mu $. We give some characterizations of Riemannian product $H^m(c_1)\times M^{n-m}(c_2)$ and show that the Riemannian product $H^m(c_1)\times M^{n-m}(c_2)$ is the only complete connected and oriented space-like hypersurface in $M^{n+1}_1(c)$ with constant $k$-th mean curvature and two distinct principal curvatures, if the multiplicities of both principal curvatures are greater than 1, or if the multiplicity of $\lambda $ is $n-1$, $\lim \limits _{s\rightarrow \pm \infty }\lambda ^k\ne H_k$ and the sectional curvature of $M^n$ is non-negative (or non-positive) when $c>0$, non-positive when $c\le 0$, where $M^{n-m}(c_2)$ denotes $R^{n-m}$, $S^{n-m}(c_2)$ or $H^{n-m}(c_2)$, according to $c=0$, $c>0$ or $c<0$, where $s$ is the arc length of the integral curve of the principal vector field corresponding to the principal curvature $\mu $.
LA - eng
KW - space-like hypersurface; Lorentzian space form; $k$-mean curvature; principal curvature; space-like hypersurface; Lorentzian space form; -mean curvature; principal curvature
UR - http://eudml.org/doc/37769
ER -

References

top
  1. Abe, N., Koike, N., Yamaguchi, S., Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (2) (1987), 123–136. (1987) Zbl0645.53010MR0928379
  2. Akutagawa, K., 10.1007/BF01179263, Math. Z. 196 (1987), 13–19. (1987) MR0907404DOI10.1007/BF01179263
  3. Brasil, A., Jr.,, Colares, A. G., Palmas, O., Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap Theorem, Illinois J. Math. 47 (2003), 847–866. (2003) Zbl1047.53031MR2007240
  4. Calabi, E., Examples of Bernstein problems for some nonlinear equations, Proc. Sympos. Pure Math. 15 (1970), 223–230. (1970) Zbl0211.12801MR0264210
  5. Cheng, S. Y., Yau, S. T., 10.2307/1970963, Ann. of Math. (2) 104 (3) (1976), 407–419. (1976) Zbl0352.53021MR0431061DOI10.2307/1970963
  6. Chouque-Bruhat, Y., Fisher, A. E., Marsden, J. E., Maximal hypersurfaces and positivity mass, Proc. of the E. Fermi Summer School of the Italian Physical Society (Ehlers, J., ed.), North-Holland, 1979. (1979) 
  7. Goddard, A. J., 10.1017/S0305004100054153, Math. Proc. Cambridge Philos. Soc. 82 (1977), 489–495. (1977) Zbl0386.53042MR0458344DOI10.1017/S0305004100054153
  8. Hu, Z., Scherfner, M., Zhai, S., 10.1016/j.difgeo.2007.06.008, Differential Geom. Appl. 25 (2007), 594–611. (2007) MR2373937DOI10.1016/j.difgeo.2007.06.008
  9. Ishihara, T., 10.1307/mmj/1029003815, Michigan Math. J. 35 (1988), 345–352. (1988) MR0978304DOI10.1307/mmj/1029003815
  10. Ki, U.-H., Kim, H.-J., Nakagawa, H., 10.3836/tjm/1270130500, Tokyo J. Math. 14 (1) (1991), 205–215. (1991) Zbl0739.53047MR1108167DOI10.3836/tjm/1270130500
  11. Li, H., Chen, W., 10.1007/BF02560214, Acta Math. Sinica (N.S.) 14 (2) (1998), 285–288. (1998) Zbl1019.53037MR1704853DOI10.1007/BF02560214
  12. Otsuki, T., 10.2307/2373502, Amer. J. Math. 92 (1970), 145–173. (1970) Zbl0196.25102MR0264565DOI10.2307/2373502
  13. Ramanathan, J., 10.1512/iumj.1987.36.36020, Indiana Univ. Math. J. 36 (1987), 349–359. (1987) MR0891779DOI10.1512/iumj.1987.36.36020
  14. Shu, S., 10.1017/S0004972700038570, Bull. Austral. Math. Soc. 73 (2006), 9–16. (2006) MR2206558DOI10.1017/S0004972700038570
  15. Wei, G., 10.1007/s00605-005-0377-1, Monatsh. Math. 149 (2006), 251–258. (2006) Zbl1129.53042MR2273364DOI10.1007/s00605-005-0377-1
  16. Zheng, Y., 10.1016/0926-2245(96)00006-X, Differential Geom. Appl. 6 (1996), 51–54. (1996) MR1384878DOI10.1016/0926-2245(96)00006-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.