Hypersurfaces with constant -th mean curvature in a Lorentzian space form
Archivum Mathematicum (2010)
- Volume: 046, Issue: 2, page 87-97
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topShu, Shichang. "Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form." Archivum Mathematicum 046.2 (2010): 87-97. <http://eudml.org/doc/37769>.
@article{Shu2010,
abstract = {In this paper, we study $n(n\ge 3)$-dimensional complete connected and oriented space-like hypersurfaces $M^n$ in an (n+1)-dimensional Lorentzian space form $M^\{n+1\}_1(c)$ with non-zero constant $k$-th $(k<n)$ mean curvature and two distinct principal curvatures $\lambda $ and $\mu $. We give some characterizations of Riemannian product $H^m(c_1)\times M^\{n-m\}(c_2)$ and show that the Riemannian product $H^m(c_1)\times M^\{n-m\}(c_2)$ is the only complete connected and oriented space-like hypersurface in $M^\{n+1\}_1(c)$ with constant $k$-th mean curvature and two distinct principal curvatures, if the multiplicities of both principal curvatures are greater than 1, or if the multiplicity of $\lambda $ is $n-1$, $\lim \limits _\{s\rightarrow \pm \infty \}\lambda ^k\ne H_k$ and the sectional curvature of $M^n$ is non-negative (or non-positive) when $c>0$, non-positive when $c\le 0$, where $M^\{n-m\}(c_2)$ denotes $R^\{n-m\}$, $S^\{n-m\}(c_2)$ or $H^\{n-m\}(c_2)$, according to $c=0$, $c>0$ or $c<0$, where $s$ is the arc length of the integral curve of the principal vector field corresponding to the principal curvature $\mu $.},
author = {Shu, Shichang},
journal = {Archivum Mathematicum},
keywords = {space-like hypersurface; Lorentzian space form; $k$-mean curvature; principal curvature; space-like hypersurface; Lorentzian space form; -mean curvature; principal curvature},
language = {eng},
number = {2},
pages = {87-97},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form},
url = {http://eudml.org/doc/37769},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Shu, Shichang
TI - Hypersurfaces with constant $k$-th mean curvature in a Lorentzian space form
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 2
SP - 87
EP - 97
AB - In this paper, we study $n(n\ge 3)$-dimensional complete connected and oriented space-like hypersurfaces $M^n$ in an (n+1)-dimensional Lorentzian space form $M^{n+1}_1(c)$ with non-zero constant $k$-th $(k<n)$ mean curvature and two distinct principal curvatures $\lambda $ and $\mu $. We give some characterizations of Riemannian product $H^m(c_1)\times M^{n-m}(c_2)$ and show that the Riemannian product $H^m(c_1)\times M^{n-m}(c_2)$ is the only complete connected and oriented space-like hypersurface in $M^{n+1}_1(c)$ with constant $k$-th mean curvature and two distinct principal curvatures, if the multiplicities of both principal curvatures are greater than 1, or if the multiplicity of $\lambda $ is $n-1$, $\lim \limits _{s\rightarrow \pm \infty }\lambda ^k\ne H_k$ and the sectional curvature of $M^n$ is non-negative (or non-positive) when $c>0$, non-positive when $c\le 0$, where $M^{n-m}(c_2)$ denotes $R^{n-m}$, $S^{n-m}(c_2)$ or $H^{n-m}(c_2)$, according to $c=0$, $c>0$ or $c<0$, where $s$ is the arc length of the integral curve of the principal vector field corresponding to the principal curvature $\mu $.
LA - eng
KW - space-like hypersurface; Lorentzian space form; $k$-mean curvature; principal curvature; space-like hypersurface; Lorentzian space form; -mean curvature; principal curvature
UR - http://eudml.org/doc/37769
ER -
References
top- Abe, N., Koike, N., Yamaguchi, S., Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (2) (1987), 123–136. (1987) Zbl0645.53010MR0928379
- Akutagawa, K., 10.1007/BF01179263, Math. Z. 196 (1987), 13–19. (1987) MR0907404DOI10.1007/BF01179263
- Brasil, A., Jr.,, Colares, A. G., Palmas, O., Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap Theorem, Illinois J. Math. 47 (2003), 847–866. (2003) Zbl1047.53031MR2007240
- Calabi, E., Examples of Bernstein problems for some nonlinear equations, Proc. Sympos. Pure Math. 15 (1970), 223–230. (1970) Zbl0211.12801MR0264210
- Cheng, S. Y., Yau, S. T., 10.2307/1970963, Ann. of Math. (2) 104 (3) (1976), 407–419. (1976) Zbl0352.53021MR0431061DOI10.2307/1970963
- Chouque-Bruhat, Y., Fisher, A. E., Marsden, J. E., Maximal hypersurfaces and positivity mass, Proc. of the E. Fermi Summer School of the Italian Physical Society (Ehlers, J., ed.), North-Holland, 1979. (1979)
- Goddard, A. J., 10.1017/S0305004100054153, Math. Proc. Cambridge Philos. Soc. 82 (1977), 489–495. (1977) Zbl0386.53042MR0458344DOI10.1017/S0305004100054153
- Hu, Z., Scherfner, M., Zhai, S., 10.1016/j.difgeo.2007.06.008, Differential Geom. Appl. 25 (2007), 594–611. (2007) MR2373937DOI10.1016/j.difgeo.2007.06.008
- Ishihara, T., 10.1307/mmj/1029003815, Michigan Math. J. 35 (1988), 345–352. (1988) MR0978304DOI10.1307/mmj/1029003815
- Ki, U.-H., Kim, H.-J., Nakagawa, H., 10.3836/tjm/1270130500, Tokyo J. Math. 14 (1) (1991), 205–215. (1991) Zbl0739.53047MR1108167DOI10.3836/tjm/1270130500
- Li, H., Chen, W., 10.1007/BF02560214, Acta Math. Sinica (N.S.) 14 (2) (1998), 285–288. (1998) Zbl1019.53037MR1704853DOI10.1007/BF02560214
- Otsuki, T., 10.2307/2373502, Amer. J. Math. 92 (1970), 145–173. (1970) Zbl0196.25102MR0264565DOI10.2307/2373502
- Ramanathan, J., 10.1512/iumj.1987.36.36020, Indiana Univ. Math. J. 36 (1987), 349–359. (1987) MR0891779DOI10.1512/iumj.1987.36.36020
- Shu, S., 10.1017/S0004972700038570, Bull. Austral. Math. Soc. 73 (2006), 9–16. (2006) MR2206558DOI10.1017/S0004972700038570
- Wei, G., 10.1007/s00605-005-0377-1, Monatsh. Math. 149 (2006), 251–258. (2006) Zbl1129.53042MR2273364DOI10.1007/s00605-005-0377-1
- Zheng, Y., 10.1016/0926-2245(96)00006-X, Differential Geom. Appl. 6 (1996), 51–54. (1996) MR1384878DOI10.1016/0926-2245(96)00006-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.