Some inequalities related to the Stam inequality
Applications of Mathematics (2008)
- Volume: 53, Issue: 3, page 195-205
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKagan, Abram, and Yu, Tinghui. "Some inequalities related to the Stam inequality." Applications of Mathematics 53.3 (2008): 195-205. <http://eudml.org/doc/37778>.
@article{Kagan2008,
abstract = {Zamir showed in 1998 that the Stam classical inequality for the Fisher information (about a location parameter) \[ 1/I(X+Y)\ge 1/I(X)+1/I(Y) \]
for independent random variables $X$, $Y$ is a simple corollary of basic properties of the Fisher information (monotonicity, additivity and a reparametrization formula). The idea of his proof works for a special case of a general (not necessarily location) parameter. Stam type inequalities are obtained for the Fisher information in a multivariate observation depending on a univariate location parameter and for the variance of the Pitman estimator of the latter.},
author = {Kagan, Abram, Yu, Tinghui},
journal = {Applications of Mathematics},
keywords = {Fisher information; location parameter; Pitman estimators; Fisher information; location parameter; Pitman estimators},
language = {eng},
number = {3},
pages = {195-205},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some inequalities related to the Stam inequality},
url = {http://eudml.org/doc/37778},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Kagan, Abram
AU - Yu, Tinghui
TI - Some inequalities related to the Stam inequality
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 3
SP - 195
EP - 205
AB - Zamir showed in 1998 that the Stam classical inequality for the Fisher information (about a location parameter) \[ 1/I(X+Y)\ge 1/I(X)+1/I(Y) \]
for independent random variables $X$, $Y$ is a simple corollary of basic properties of the Fisher information (monotonicity, additivity and a reparametrization formula). The idea of his proof works for a special case of a general (not necessarily location) parameter. Stam type inequalities are obtained for the Fisher information in a multivariate observation depending on a univariate location parameter and for the variance of the Pitman estimator of the latter.
LA - eng
KW - Fisher information; location parameter; Pitman estimators; Fisher information; location parameter; Pitman estimators
UR - http://eudml.org/doc/37778
ER -
References
top- Carlen, E. A., 10.1016/0022-1236(91)90155-X, J. Funct. Anal. 101 (1991), 194-211. (1991) Zbl0732.60020MR1132315DOI10.1016/0022-1236(91)90155-X
- Ibragimov, I. A., Khas'minskij, R. Z., Statistical Estimation. Asymptotic Theory, Springer New York (1981). (1981) Zbl0467.62026MR0620321
- Kagan, A., Landsman, Z., 10.1016/S0167-7152(96)00070-3, Statist. Probab. Lett. 32 (1997), 175-179. (1997) Zbl0874.60002MR1436863DOI10.1016/S0167-7152(96)00070-3
- Kagan, A., An inequality for the Pitman estimators related to the Stam inequality, Sankhya A64 (2002), 282-292. (2002) Zbl1192.62099MR1981759
- Kagan, A., Shepp, L. A., 10.1198/000313005X21041, Amer. Statist. 59 (2005), 54-56. (2005) MR2113195DOI10.1198/000313005X21041
- Kagan, A., Yu, T., Barron, A., Madiman, M., Contribution to the theory of Pitman estimators, Submitted.
- Madiman, M., Barron, A., The monotonicity of information in the central limit theorem and entropy power inequalities, Preprint Dept. of Statistics, Yale University (2006). (2006) MR2128239
- Shao, J., Mathematical Statistics, 2nd ed, Springer New York (2003). (2003) Zbl1018.62001MR2002723
- Stam, A. J., 10.1016/S0019-9958(59)90348-1, Inform. and Control 2 (1959), 101-112. (1959) Zbl0085.34701MR0109101DOI10.1016/S0019-9958(59)90348-1
- Zamir, R., 10.1109/18.669301, IEEE Trans. Inf. Theory 44 (1998), 1246-1250. (1998) Zbl0901.62005MR1616672DOI10.1109/18.669301
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.