Kendall's tau-type rank statistics in genome data
Applications of Mathematics (2008)
- Volume: 53, Issue: 3, page 207-221
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKang, Moonsu, and Sen, Pranab Kumar. "Kendall's tau-type rank statistics in genome data." Applications of Mathematics 53.3 (2008): 207-221. <http://eudml.org/doc/37779>.
@article{Kang2008,
abstract = {High-dimensional data models abound in genomics studies, where often inadequately small sample sizes create impasses for incorporation of standard statistical tools. Conventional assumptions of linearity of regression, homoscedasticity and (multi-) normality of errors may not be tenable in many such interdisciplinary setups. In this study, Kendall's tau-type rank statistics are employed for statistical inference, avoiding most of parametric assumptions to a greater extent. The proposed procedures are compared with Kendall's tau statistic based ones. Applications in microarray data models are stressed.},
author = {Kang, Moonsu, Sen, Pranab Kumar},
journal = {Applications of Mathematics},
keywords = {dimensional asymptotics; genomics; multiple hypotheses testing; microarray data model; nonparametrics; U-statistics; dimensional asymptotics; genomics; multiple hypotheses testing; microarray data model; U-statistics},
language = {eng},
number = {3},
pages = {207-221},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Kendall's tau-type rank statistics in genome data},
url = {http://eudml.org/doc/37779},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Kang, Moonsu
AU - Sen, Pranab Kumar
TI - Kendall's tau-type rank statistics in genome data
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 3
SP - 207
EP - 221
AB - High-dimensional data models abound in genomics studies, where often inadequately small sample sizes create impasses for incorporation of standard statistical tools. Conventional assumptions of linearity of regression, homoscedasticity and (multi-) normality of errors may not be tenable in many such interdisciplinary setups. In this study, Kendall's tau-type rank statistics are employed for statistical inference, avoiding most of parametric assumptions to a greater extent. The proposed procedures are compared with Kendall's tau statistic based ones. Applications in microarray data models are stressed.
LA - eng
KW - dimensional asymptotics; genomics; multiple hypotheses testing; microarray data model; nonparametrics; U-statistics; dimensional asymptotics; genomics; multiple hypotheses testing; microarray data model; U-statistics
UR - http://eudml.org/doc/37779
ER -
References
top- Arratia, R., Goldstein, L., Gordon, L., 10.1214/aop/1176991491, Ann. Probab. 17 (1989), 9-25. (1989) Zbl0675.60017MR0972770DOI10.1214/aop/1176991491
- Arratia, R., Goldstein, L., Gordon, L., 10.1214/ss/1177012015, Stat. Sci. 5 (1990), 403-424. (1990) Zbl0955.62542MR1092983DOI10.1214/ss/1177012015
- Arratia, R., Goldstein, L., Gordon, L., 10.1214/ss/1177012020, Stat. Sci. 5 (1990), 432-434. (1990) MR1092983DOI10.1214/ss/1177012020
- Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Stat. Soc., Ser. B 57 (1995), 289-300. (1995) Zbl0809.62014MR1325392
- Chen, L. H. Y., 10.1214/aop/1176996359, Ann. Probab. 3 (1975), 534-545. (1975) Zbl0335.60016MR0428387DOI10.1214/aop/1176996359
- Chen, L. H. Y., 10.1214/ss/1177012019, Stat. Sci. 5 (1990), 429-432. (1990) MR1092983DOI10.1214/ss/1177012019
- Goldstein, L., Watterman, M., 10.1007/BF02459930, Bull. Math. Biol. 54 (1992), 785-812. (1992) DOI10.1007/BF02459930
- Goldstein, L., Xia, A., 10.1214/009117906000000250, Ann. Probab. 34 (2006), 1782-1806. (2006) Zbl1111.60015MR2271482DOI10.1214/009117906000000250
- Jurečková, J., Sen, P. K., Robust Statistical Procedures: Asymptotics and Interrelations. Wiley Series, Wiley & Sons New York (1996). (1996) MR1387346
- Kang, M., Multiple testing in genome-wide studies, UNC Biostatistics Thesis (2007). (2007)
- Kendall, M. G., 10.1093/biomet/30.1-2.81, Biometrika 30 (1938), 81-93. (1938) Zbl0019.13001DOI10.1093/biomet/30.1-2.81
- Lobenhofer, E. K., Bennett, L., Cable, P. L., Li, L., Bushel, P. R., Afshari, C. A., Regulation of DNA replication fork genes by 17-estradiol, Molecular Endocrinology 16 (2002), 1215-1229. (2002)
- Roy, S. N., 10.1214/aoms/1177729029, J. Ann. Math. Stat. 24 (1953), 220-238. (1953) Zbl0051.36701MR0057519DOI10.1214/aoms/1177729029
- Sarkar, S. K., Chang, C.-K., 10.1080/01621459.1997.10473682, J. Am. Stat. Assoc. 92 (1997), 1601-1608. (1997) Zbl0912.62079MR1615269DOI10.1080/01621459.1997.10473682
- Sen, P. K., 10.1080/01621459.1968.10480934, J. Am. Stat. Assoc. 63 (1968), 1379-1389. (1968) MR0258201DOI10.1080/01621459.1968.10480934
- Sen, P. K., Robust statistical inference for high-dimensional data models with application to genomics, Aust. J. Stat. 35 (2006), 197-211. (2006)
- Sen, P. K., Kendall's tau in high-dimension genomics parsimony, IMS Collection 3 (2008), 250-265. (2008) MR2459229
- Sen, P. K., Tsai, M.-T., Jou, Y.-S., 10.1198/016214507000000077, J. Am. Stat. Assoc. 102 (2007), 686-694. (2007) Zbl1172.62335MR2370860DOI10.1198/016214507000000077
- Storey, J., 10.1111/1467-9868.00346, J. R. Stat. Soc., Ser. B 64 (2002), 479-498. (2002) Zbl1090.62073MR1924302DOI10.1111/1467-9868.00346
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.