A phase-field model of grain boundary motion
Akio Ito; Nobuyuki Kenmochi; Noriaki Yamazaki
Applications of Mathematics (2008)
- Volume: 53, Issue: 5, page 433-454
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topIto, Akio, Kenmochi, Nobuyuki, and Yamazaki, Noriaki. "A phase-field model of grain boundary motion." Applications of Mathematics 53.5 (2008): 433-454. <http://eudml.org/doc/37794>.
@article{Ito2008,
abstract = {We consider a phase-field model of grain structure evolution, which appears in materials sciences. In this paper we study the grain boundary motion model of Kobayashi-Warren-Carter type, which contains a singular diffusivity. The main objective of this paper is to show the existence of solutions in a generalized sense. Moreover, we show the uniqueness of solutions for the model in one-dimensional space.},
author = {Ito, Akio, Kenmochi, Nobuyuki, Yamazaki, Noriaki},
journal = {Applications of Mathematics},
keywords = {grain boundary motion; singular diffusion; subdifferential; grain boundary motion; singular diffusion; subdifferential},
language = {eng},
number = {5},
pages = {433-454},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A phase-field model of grain boundary motion},
url = {http://eudml.org/doc/37794},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Ito, Akio
AU - Kenmochi, Nobuyuki
AU - Yamazaki, Noriaki
TI - A phase-field model of grain boundary motion
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 5
SP - 433
EP - 454
AB - We consider a phase-field model of grain structure evolution, which appears in materials sciences. In this paper we study the grain boundary motion model of Kobayashi-Warren-Carter type, which contains a singular diffusivity. The main objective of this paper is to show the existence of solutions in a generalized sense. Moreover, we show the uniqueness of solutions for the model in one-dimensional space.
LA - eng
KW - grain boundary motion; singular diffusion; subdifferential; grain boundary motion; singular diffusion; subdifferential
UR - http://eudml.org/doc/37794
ER -
References
top- Andreu, F., Ballester, C., Caselles, V., Mazón, J. M., 10.1006/jfan.2000.3698, J. Funct. Anal. 180 (2001), 347-403. (2001) Zbl0973.35109MR1814993DOI10.1006/jfan.2000.3698
- Andreu, F., Caselles, V., Díaz, J. I., Mazón, J. M., 10.1006/jfan.2001.3829, J. Funct. Anal. 188 (2002), 516-547. (2002) Zbl1042.35018MR1883415DOI10.1006/jfan.2001.3829
- Andreu, F., Caselles, V., Mazón, J. M., 10.1007/s00205-005-0358-5, Arch. Ration. Mech. Anal. 176 (2005), 415-453. (2005) Zbl1112.35111MR2185664DOI10.1007/s00205-005-0358-5
- Attouch, H., Variational Convergence for Functions and Operators, Pitman Advanced Publishing Program Boston-London-Melbourne (1984). (1984) Zbl0561.49012MR0773850
- Barbu, V., Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest Noordhoff International Publishing Leiden (1976). (1976) Zbl0328.47035MR0390843
- Bellettini, G., Caselles, V., Novaga, M., 10.1006/jdeq.2001.4150, J. Differ. Equations 184 (2002), 475-525. (2002) Zbl1036.35099MR1929886DOI10.1006/jdeq.2001.4150
- Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Amsterdam (1973), French. (1973) MR0348562
- Chen, L. Q., 10.1146/annurev.matsci.32.112001.132041, Ann. Rev. Mater. Res. 32 (2002), 113-140. (2002) DOI10.1146/annurev.matsci.32.112001.132041
- Clarke, F. H., Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc. New York (1983). (1983) MR0709590
- Friedman, A., Partial Differential Equations of Parabolic Type, Prentice-Hall Englewood Cliffs (1964). (1964) Zbl0144.34903MR0181836
- Giga, M.-H., Giga, Y., Kobayashi, R., 10.2969/aspm/03110093, Adv. Stud. Pure Math. 31 (2001), 93-125. (2001) MR1865089DOI10.2969/aspm/03110093
- Gurtin, M. E., Lusk, M. T., 10.1016/S0167-2789(98)00323-6, Physica D 130 (1999), 133-154. (1999) Zbl0948.74042MR1694730DOI10.1016/S0167-2789(98)00323-6
- Ito, A., Gokieli, M., Niezgódka, M., Szpindler, M., Mathematical analysis of approximate system for one-dimensional grain boundary motion of Kobayashi-Warren-Carter type, Submitted.
- Kenmochi, N., Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ. Vol. 30 (1981), 1-87. (1981) Zbl0662.35054
- Kenmochi, N., Monotonicity and compactness methods for nonlinear variational inequalities, Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 4 M. Chipot North Holland Amsterdam (2007), 203-298. (2007) Zbl1192.35083MR2569333
- Kenmochi, N., Niezgódka, M., 10.1016/0362-546X(94)90235-6, Nonlinear Anal., Theory Methods Appl. 22 (1994), 1163-1180. (1994) MR1279139DOI10.1016/0362-546X(94)90235-6
- Kobayashi, R., Giga, Y., 10.1023/A:1004570921372, J. Statist. Phys. 95 (1999), 1187-1220. (1999) Zbl0952.74014MR1712447DOI10.1023/A:1004570921372
- Kobayashi, R., Warren, J. A., Carter, W. C., 10.1016/S0167-2789(00)00023-3, Physica D 140 (2000), 141-150. (2000) Zbl0956.35123MR1752970DOI10.1016/S0167-2789(00)00023-3
- Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Lusk, M. T., A phase field paradigm for grain growth and recrystallization, Proc. R. Soc. London A 455 (1999), 677-700. (1999) Zbl0933.74016MR1700887
- Ôtani, M., 10.1016/0022-0396(82)90119-X, J. Differ. Equations 46 (1982), 268-299. (1982) MR0675911DOI10.1016/0022-0396(82)90119-X
- Visintin, A., Models of Phase Transitions. Progress in Nonlinear Differential Equations and their Applications, Vol. 28, Birkhäuser-Verlag Boston (1996). (1996) MR1423808
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.