Optimal-order quadratic interpolation in vertices of unstructured triangulations

Josef Dalík

Applications of Mathematics (2008)

  • Volume: 53, Issue: 6, page 547-560
  • ISSN: 0862-7940

Abstract

top
We study the problem of Lagrange interpolation of functions of two variables by quadratic polynomials under the condition that nodes of interpolation are vertices of a triangulation. For an extensive class of triangulations we prove that every inner vertex belongs to a local six-tuple of vertices which, used as nodes of interpolation, have the following property: For every smooth function there exists a unique quadratic Lagrange interpolation polynomial and the related local interpolation error is of optimal order. The existence of such six-tuples of vertices is a precondition for a successful application of certain post-processing procedures to the finite-element approximations of the solutions of differential problems.

How to cite

top

Dalík, Josef. "Optimal-order quadratic interpolation in vertices of unstructured triangulations." Applications of Mathematics 53.6 (2008): 547-560. <http://eudml.org/doc/37800>.

@article{Dalík2008,
abstract = {We study the problem of Lagrange interpolation of functions of two variables by quadratic polynomials under the condition that nodes of interpolation are vertices of a triangulation. For an extensive class of triangulations we prove that every inner vertex belongs to a local six-tuple of vertices which, used as nodes of interpolation, have the following property: For every smooth function there exists a unique quadratic Lagrange interpolation polynomial and the related local interpolation error is of optimal order. The existence of such six-tuples of vertices is a precondition for a successful application of certain post-processing procedures to the finite-element approximations of the solutions of differential problems.},
author = {Dalík, Josef},
journal = {Applications of Mathematics},
keywords = {interpolation of functions of two variables; strongly regular classes of triangulations; poised sets of vertices; interpolation of functions of two variables; strongly regular classes of triangulations; poised sets of vertices},
language = {eng},
number = {6},
pages = {547-560},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Optimal-order quadratic interpolation in vertices of unstructured triangulations},
url = {http://eudml.org/doc/37800},
volume = {53},
year = {2008},
}

TY - JOUR
AU - Dalík, Josef
TI - Optimal-order quadratic interpolation in vertices of unstructured triangulations
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 6
SP - 547
EP - 560
AB - We study the problem of Lagrange interpolation of functions of two variables by quadratic polynomials under the condition that nodes of interpolation are vertices of a triangulation. For an extensive class of triangulations we prove that every inner vertex belongs to a local six-tuple of vertices which, used as nodes of interpolation, have the following property: For every smooth function there exists a unique quadratic Lagrange interpolation polynomial and the related local interpolation error is of optimal order. The existence of such six-tuples of vertices is a precondition for a successful application of certain post-processing procedures to the finite-element approximations of the solutions of differential problems.
LA - eng
KW - interpolation of functions of two variables; strongly regular classes of triangulations; poised sets of vertices; interpolation of functions of two variables; strongly regular classes of triangulations; poised sets of vertices
UR - http://eudml.org/doc/37800
ER -

References

top
  1. Ainsworth, M., Craig, A., 10.1007/BF01385730, Numer. Math. 60 (1992), 429-463. (1992) Zbl0757.65109MR1142306DOI10.1007/BF01385730
  2. Ainsworth, M., Oden, J., A Posteriori Error Estimation in Finite Element Analysis. A Wiley-Interscience Series of Texts, Monographs, and Tracts, Wiley & Sons, Inc. Chichester (2000). (2000) MR1885308
  3. Beresin, I. S., Shidkow, N. P., Numerische Methoden 1, VEB Deutscher Verlag der Wissenschaften Berlin (1970), German. (1970) Zbl0226.65001MR0343524
  4. Dalík, J., Quadratic interpolation polynomials in vertices of strongly regular triangulations, Finite Element Methods. Superconvergence, Postprocessing and Aposteriori Estimates. Lect. Notes Pure Appl. Math. 196 M. Křížek et al. Marcel Dekker, Inc. (1998), 85-94. (1998) MR1602833
  5. Dalík, J., Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles, Arch. Math., Brno 35 (1999), 285-297. (1999) MR1744516
  6. Durán, R., Muschietti, M. A., Rodríguez, R., 10.1007/BF01385773, Numer. Math. 59 (1991), 107-127. (1991) MR1106377DOI10.1007/BF01385773
  7. Durán, R., Rodríguez, R., 10.1007/BF01396231, Numer. Math. 62 (1992), 297-303. (1992) Zbl0761.65077MR1169006DOI10.1007/BF01396231
  8. Gasca, M., Sauer, T., 10.1137/S0036142998338873, SIAM J. Numer. Anal. 37 (2000), 772-798. (2000) Zbl0951.65008MR1740382DOI10.1137/S0036142998338873
  9. Křížek, M., Higher order global accuracy of a weighted averaged gradient of the Courant elements on irregular meshes, Proc. Conf. Finite Element Methods: Fifty Years of the Courant Element, Jyväskylä 1993 M. Křížek et al. Marcel Dekker New York (1994), 267-276. (1994) MR1299997
  10. Křížek, M., Neittaanmäki, P., 10.1007/BF01379664, Numer. Math. 45 (1984), 105-116. (1984) MR0761883DOI10.1007/BF01379664
  11. Kufner, A., John, O., Fučík, S., Function Spaces, Academia Prague (1977). (1977) MR0482102
  12. Liang, X.-Z., Lü, C.-M., Feng, R.-Z., 10.1137/S0036142999361566, SIAM J. Numer. Anal. 39 (2001), 587-595. (2001) Zbl1026.41005MR1860262DOI10.1137/S0036142999361566
  13. Markov, A. A., Sur une question posée par Mendeleieff, IAN 62 (1889), 1-24. (1889) 
  14. Prenter, P. M., Splines and Variational Methods, John Wiley & Sons, Inc. New York (1975). (1975) Zbl0344.65044MR0483270
  15. Ovall, J. S., 10.1007/s00211-005-0655-9, Numer. Math. 102 (2006), 543-558. (2006) Zbl1108.65108MR2207272DOI10.1007/s00211-005-0655-9
  16. Sauer, T., Xu, Y., 10.1090/S0025-5718-1995-1297477-5, Math. Comput. 64 (1995), 1147-1170. (1995) Zbl0823.41002MR1297477DOI10.1090/S0025-5718-1995-1297477-5
  17. Wilhelmsen, R. Don, 10.1016/0021-9045(74)90012-4, J. Approx. Theory 11 (1974), 216-220. (1974) Zbl0287.26016MR0352826DOI10.1016/0021-9045(74)90012-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.