New results on periodic solutions for a kind of Rayleigh equation
Mei-Lan Tang; Xin-Ge Liu; Xin-Bi Liu
Applications of Mathematics (2009)
- Volume: 54, Issue: 1, page 79-85
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topTang, Mei-Lan, Liu, Xin-Ge, and Liu, Xin-Bi. "New results on periodic solutions for a kind of Rayleigh equation." Applications of Mathematics 54.1 (2009): 79-85. <http://eudml.org/doc/37809>.
@article{Tang2009,
abstract = {The paper deals with the existence of periodic solutions for a kind of non-autonomous time-delay Rayleigh equation. With the continuation theorem of the coincidence degree and a priori estimates, some new results on the existence of periodic solutions for this kind of Rayleigh equation are established.},
author = {Tang, Mei-Lan, Liu, Xin-Ge, Liu, Xin-Bi},
journal = {Applications of Mathematics},
keywords = {Rayleigh equations; existence; periodic solution; a priori estimate; existence; periodic solution; a priori estimate},
language = {eng},
number = {1},
pages = {79-85},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New results on periodic solutions for a kind of Rayleigh equation},
url = {http://eudml.org/doc/37809},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Tang, Mei-Lan
AU - Liu, Xin-Ge
AU - Liu, Xin-Bi
TI - New results on periodic solutions for a kind of Rayleigh equation
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 79
EP - 85
AB - The paper deals with the existence of periodic solutions for a kind of non-autonomous time-delay Rayleigh equation. With the continuation theorem of the coincidence degree and a priori estimates, some new results on the existence of periodic solutions for this kind of Rayleigh equation are established.
LA - eng
KW - Rayleigh equations; existence; periodic solution; a priori estimate; existence; periodic solution; a priori estimate
UR - http://eudml.org/doc/37809
ER -
References
top- Chen, F. D., Existence and uniqueness of almost periodic solutions for forced Rayleigh equations, Ann. Differ. Equations 17 (2001), 1-9. (2001) MR1829382
- Chen, F. D., Chen, X. X., Lin, F. X., Shi, J. L., Periodic solution and global attractivity of a class of differential equations with delays, Acta Math. Appl. Sin. 28 (2005), 55-64 Chinese. (2005) MR2157759
- Deimling, K., Nonlinear Functional Analysis, Springer Berlin (1985). (1985) Zbl0559.47040
- Gaines, R. E., Mawhin, J. L., 10.1007/BFb0089537, Springer Berlin (1977). (1977) DOI10.1007/BFb0089537
- Huang, C., He, Y., Huang, L., Tan, W., 10.1016/j.mcm.2006.11.024, Math. Comput. Modelling 46 (2007), 604-611. (2007) MR2329595DOI10.1016/j.mcm.2006.11.024
- Liu, F., On the existence of the periodic solutions of Rayleigh equation, Acta Math. Sin. 37 (1994), 639-644 Chinese. (1994) Zbl0812.34037
- Lu, S. P., Ge, W. G., Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument, Nonlinear Anal., Theory Methods Appl. 56 (2004), 501-514. (2004) Zbl1078.34048MR2035324
- Lu, S. P., Ge, W. G., Zheng, Z. X., 10.1016/S0893-9659(04)90087-0, Appl. Math. Lett. 17 (2004), 443-449. (2004) Zbl1073.34081MR2045750DOI10.1016/S0893-9659(04)90087-0
- Lu, S. P., Ge, W. G., Zheng, Z. X., Periodic solutions for a kind of Rayleigh equation with a deviating argument, Acta Math. Sin. 47 (2004), 299-304. (2004) Zbl1073.34081MR2074353
- Peng, L., 10.1016/j.jfranklin.2006.04.001, J. Franklin Inst. 7 (2006), 676-687. (2006) Zbl1114.34051MR2293410DOI10.1016/j.jfranklin.2006.04.001
- Wang, G.-Q., Cheng, S. S., 10.1016/S0893-9659(98)00169-4, Appl. Math. Lett. 12 (1999), 41-44. (1999) Zbl0980.34068DOI10.1016/S0893-9659(98)00169-4
- Wang, G.-Q., Yan, J. R., Existence theorem of periodic positive solutions for the Rayleigh equation of retarded type, Portugal. Math. 57 (2000), 153-160. (2000) Zbl0963.34069
- Wang, G.-Q., Yan, J. R., 10.1155/S0161171200001836, Int. J. Math. Math. Sci. 23 (2000), 65-68. (2000) Zbl0949.34059DOI10.1155/S0161171200001836
- Zhou, Y., Tang, X., 10.1016/j.cam.2006.03.002, J. Comput. Appl. Math. 203 (2007), 1-5. (2007) Zbl1115.34067MR2313817DOI10.1016/j.cam.2006.03.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.