Global superconvergence of finite element methods for parabolic inverse problems

Hossein Azari; Shu Hua Zhang

Applications of Mathematics (2009)

  • Volume: 54, Issue: 3, page 285-294
  • ISSN: 0862-7940

Abstract

top
In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.

How to cite

top

Azari, Hossein, and Zhang, Shu Hua. "Global superconvergence of finite element methods for parabolic inverse problems." Applications of Mathematics 54.3 (2009): 285-294. <http://eudml.org/doc/37821>.

@article{Azari2009,
abstract = {In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.},
author = {Azari, Hossein, Zhang, Shu Hua},
journal = {Applications of Mathematics},
keywords = {inverse problem; global superconvergence; finite element method; inverse problem; global superconvergence; finite element method},
language = {eng},
number = {3},
pages = {285-294},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global superconvergence of finite element methods for parabolic inverse problems},
url = {http://eudml.org/doc/37821},
volume = {54},
year = {2009},
}

TY - JOUR
AU - Azari, Hossein
AU - Zhang, Shu Hua
TI - Global superconvergence of finite element methods for parabolic inverse problems
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 285
EP - 294
AB - In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.
LA - eng
KW - inverse problem; global superconvergence; finite element method; inverse problem; global superconvergence; finite element method
UR - http://eudml.org/doc/37821
ER -

References

top
  1. Alvarez, C., Conca, C., Friz, L., Kavian, O., Ortega, J. H., Identification of immersed obstacles via boundary measurements, Inverse Probl. 21 (2005), 1531-1552. (2005) Zbl1088.35080MR2173409
  2. Azari, H., Allegretto, W., Lin, Y., Zhang, S., Numerical procedures for recovering a time dependent coefficient in a parabolic differential equation, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 11 (2004), 181-199. (2004) Zbl1055.35132MR2049776
  3. Azari, H., Li, Ch., Nie, Y., Zhang, S., Determination of an unknown coefficient in a parabolic inverse problem, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 665-674. (2004) Zbl1059.35161MR2077110
  4. Azari, H., Zhang, S., Identifying a time dependent unknown coefficient in a parabolic inverse problem, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms. Suppl. 12b (2005), 32-43. (2005) MR2269155
  5. Cannon, J. R., Yin, H.-M., 10.1016/0022-0396(89)90103-4, J. Differ. Equations 79 (1989), 266-288. (1989) Zbl0702.35120MR1000690DOI10.1016/0022-0396(89)90103-4
  6. Cannon, J. R., Yin, H.-M., 10.1002/num.1690060207, Numer. Methods Partial Differ. Equations 6 (1990), 177-191. (1990) Zbl0709.65105MR1051841DOI10.1002/num.1690060207
  7. Canuto, B., Kavian, O., 10.1137/S003614109936525X, SIAM J. Math. Anal. 32 (2001), 963-986 (electronic). (2001) Zbl0981.35096MR1828313DOI10.1137/S003614109936525X
  8. J. Douglas, Jr., B. F. Jones, Jr., The determination of a coefficient in a parabolic differential equation. II. Numerical approximation, J. Math. Mech. 11 (1962), 919-926. (1962) Zbl0112.32603MR0153988
  9. B. F. Jones, Jr., The determination of a coefficient in a parabolic differential equation. I. Existence and uniqueness, J. Math. Mech. 11 (1962), 907-918. (1962) Zbl0112.32602MR0153987
  10. Keung, Y. L., Zou, J., Numerical identification of parameters in parabolic systems, Inverse Probl. 14 (1998), 83-100. (1998) Zbl0894.35127MR1607632
  11. Khachfe, R. A., Jarny, Y., 10.1080/104077900275549, Numer. Heat Transfer, Part B: Fundamentals 37 (2000), 45-67. (2000) DOI10.1080/104077900275549
  12. Lin, Q., Yan, N., The Construction and Analysis of High Efficiency Finite Element Methods, Hebei University Publishers Baoding (1996), Chinese. (1996) 
  13. Lin, Q., Zhu, Q., The Preprocessing and Postprocessing for the Finite Element Method, Shanghai Scientific & Technical Publishers Shanghai (1994), Chinese. (1994) 
  14. Prilepko, A. I., Orlovskii, D. G., Determination of the parameter of an evolution equation and inverse problems of mathematical physics I, Differ. Equations 21 (1985), 96-104. (1985) MR0777788
  15. Ramm, A. G., 10.1006/jmaa.2001.7781, J. Math. Anal. Appl. 264 (2001), 691-697. (2001) Zbl0987.35164MR1876759DOI10.1006/jmaa.2001.7781
  16. Ramm, A. G., A non-overdetermined inverse problem of finding the potential from the spectral function, Int. J. Differ. Equ. Appl. 3 (2001), 15-29. (2001) Zbl1048.35137MR1852465
  17. Ramm, A. G., Inverse problems for parabolic equations applications, Aust. J. Math. Anal. Appl. 2 (2005), Art. 10 (electronic). Zbl1162.35384MR2174516
  18. Ramm, A. G., Koshkin, S. V., 10.1080/00036810108840973, Appl. Anal. 79 (2001), 475-482. (2001) Zbl1020.35120MR1880954DOI10.1080/00036810108840973
  19. Xiong, X. T., Fu, C. L., Li, H. F., 10.1016/j.amc.2003.08.028, Appl. Math. Comput. 157 (2004), 77-91. (2004) Zbl1068.65117MR2085525DOI10.1016/j.amc.2003.08.028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.