Global superconvergence of finite element methods for parabolic inverse problems
Applications of Mathematics (2009)
- Volume: 54, Issue: 3, page 285-294
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAzari, Hossein, and Zhang, Shu Hua. "Global superconvergence of finite element methods for parabolic inverse problems." Applications of Mathematics 54.3 (2009): 285-294. <http://eudml.org/doc/37821>.
@article{Azari2009,
abstract = {In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.},
author = {Azari, Hossein, Zhang, Shu Hua},
journal = {Applications of Mathematics},
keywords = {inverse problem; global superconvergence; finite element method; inverse problem; global superconvergence; finite element method},
language = {eng},
number = {3},
pages = {285-294},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global superconvergence of finite element methods for parabolic inverse problems},
url = {http://eudml.org/doc/37821},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Azari, Hossein
AU - Zhang, Shu Hua
TI - Global superconvergence of finite element methods for parabolic inverse problems
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 285
EP - 294
AB - In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.
LA - eng
KW - inverse problem; global superconvergence; finite element method; inverse problem; global superconvergence; finite element method
UR - http://eudml.org/doc/37821
ER -
References
top- Alvarez, C., Conca, C., Friz, L., Kavian, O., Ortega, J. H., Identification of immersed obstacles via boundary measurements, Inverse Probl. 21 (2005), 1531-1552. (2005) Zbl1088.35080MR2173409
- Azari, H., Allegretto, W., Lin, Y., Zhang, S., Numerical procedures for recovering a time dependent coefficient in a parabolic differential equation, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 11 (2004), 181-199. (2004) Zbl1055.35132MR2049776
- Azari, H., Li, Ch., Nie, Y., Zhang, S., Determination of an unknown coefficient in a parabolic inverse problem, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 665-674. (2004) Zbl1059.35161MR2077110
- Azari, H., Zhang, S., Identifying a time dependent unknown coefficient in a parabolic inverse problem, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms. Suppl. 12b (2005), 32-43. (2005) MR2269155
- Cannon, J. R., Yin, H.-M., 10.1016/0022-0396(89)90103-4, J. Differ. Equations 79 (1989), 266-288. (1989) Zbl0702.35120MR1000690DOI10.1016/0022-0396(89)90103-4
- Cannon, J. R., Yin, H.-M., 10.1002/num.1690060207, Numer. Methods Partial Differ. Equations 6 (1990), 177-191. (1990) Zbl0709.65105MR1051841DOI10.1002/num.1690060207
- Canuto, B., Kavian, O., 10.1137/S003614109936525X, SIAM J. Math. Anal. 32 (2001), 963-986 (electronic). (2001) Zbl0981.35096MR1828313DOI10.1137/S003614109936525X
- J. Douglas, Jr., B. F. Jones, Jr., The determination of a coefficient in a parabolic differential equation. II. Numerical approximation, J. Math. Mech. 11 (1962), 919-926. (1962) Zbl0112.32603MR0153988
- B. F. Jones, Jr., The determination of a coefficient in a parabolic differential equation. I. Existence and uniqueness, J. Math. Mech. 11 (1962), 907-918. (1962) Zbl0112.32602MR0153987
- Keung, Y. L., Zou, J., Numerical identification of parameters in parabolic systems, Inverse Probl. 14 (1998), 83-100. (1998) Zbl0894.35127MR1607632
- Khachfe, R. A., Jarny, Y., 10.1080/104077900275549, Numer. Heat Transfer, Part B: Fundamentals 37 (2000), 45-67. (2000) DOI10.1080/104077900275549
- Lin, Q., Yan, N., The Construction and Analysis of High Efficiency Finite Element Methods, Hebei University Publishers Baoding (1996), Chinese. (1996)
- Lin, Q., Zhu, Q., The Preprocessing and Postprocessing for the Finite Element Method, Shanghai Scientific & Technical Publishers Shanghai (1994), Chinese. (1994)
- Prilepko, A. I., Orlovskii, D. G., Determination of the parameter of an evolution equation and inverse problems of mathematical physics I, Differ. Equations 21 (1985), 96-104. (1985) MR0777788
- Ramm, A. G., 10.1006/jmaa.2001.7781, J. Math. Anal. Appl. 264 (2001), 691-697. (2001) Zbl0987.35164MR1876759DOI10.1006/jmaa.2001.7781
- Ramm, A. G., A non-overdetermined inverse problem of finding the potential from the spectral function, Int. J. Differ. Equ. Appl. 3 (2001), 15-29. (2001) Zbl1048.35137MR1852465
- Ramm, A. G., Inverse problems for parabolic equations applications, Aust. J. Math. Anal. Appl. 2 (2005), Art. 10 (electronic). Zbl1162.35384MR2174516
- Ramm, A. G., Koshkin, S. V., 10.1080/00036810108840973, Appl. Anal. 79 (2001), 475-482. (2001) Zbl1020.35120MR1880954DOI10.1080/00036810108840973
- Xiong, X. T., Fu, C. L., Li, H. F., 10.1016/j.amc.2003.08.028, Appl. Math. Comput. 157 (2004), 77-91. (2004) Zbl1068.65117MR2085525DOI10.1016/j.amc.2003.08.028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.