A parametrized Newton method for nonsmooth equations with finitely many maximum functions
Applications of Mathematics (2009)
- Volume: 54, Issue: 5, page 381-390
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDu, Shou-qiang, and Gao, Yan. "A parametrized Newton method for nonsmooth equations with finitely many maximum functions." Applications of Mathematics 54.5 (2009): 381-390. <http://eudml.org/doc/37828>.
@article{Du2009,
abstract = {In this paper we propose a parametrized Newton method for nonsmooth equations with finitely many maximum functions. The convergence result of this method is proved and numerical experiments are listed.},
author = {Du, Shou-qiang, Gao, Yan},
journal = {Applications of Mathematics},
keywords = {nonsmooth equations; Newton method; convergence; numerical examples; nonsmooth equations; Newton method; convergence; numerical examples},
language = {eng},
number = {5},
pages = {381-390},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A parametrized Newton method for nonsmooth equations with finitely many maximum functions},
url = {http://eudml.org/doc/37828},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Du, Shou-qiang
AU - Gao, Yan
TI - A parametrized Newton method for nonsmooth equations with finitely many maximum functions
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 5
SP - 381
EP - 390
AB - In this paper we propose a parametrized Newton method for nonsmooth equations with finitely many maximum functions. The convergence result of this method is proved and numerical experiments are listed.
LA - eng
KW - nonsmooth equations; Newton method; convergence; numerical examples; nonsmooth equations; Newton method; convergence; numerical examples
UR - http://eudml.org/doc/37828
ER -
References
top- Chen, X., Qi, L., 10.1007/BF01300972, Comput. Optim. Appl. 3 (1994), 157-179. (1994) Zbl0821.65029MR1273659DOI10.1007/BF01300972
- Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley & Sons New York (1983). (1983) Zbl0582.49001MR0709590
- Gao, Y., 10.1023/A:1013791923957, Appl. Math. 46 (2001), 215-229. (2001) Zbl1068.65063MR1828306DOI10.1023/A:1013791923957
- Mifflin, R., 10.1137/0315061, SIAM J. Control. Optim. 15 (1997), 959-972. (1997) MR0461556DOI10.1137/0315061
- Pang, J. S., Qi, L., 10.1137/0803021, SIAM J. Optim. 3 (1993), 443-465. (1993) Zbl0784.90082MR1230150DOI10.1137/0803021
- Potra, F. A., Qi, L., Sun, D., 10.1007/s002110050369, Numer. Math. 80 (1998), 305-324. (1998) Zbl0914.65051MR1645041DOI10.1007/s002110050369
- Qi, L., Sun, J., 10.1007/BF01581275, Math. Program. Ser. A 58 (1993), 353-367. (1993) Zbl0780.90090MR1216791DOI10.1007/BF01581275
- Qi, L., 10.1287/moor.18.1.227, Math. Oper. Res. 18 (1993), 227-244. (1993) Zbl0776.65037MR1250115DOI10.1287/moor.18.1.227
- Śmietański, M. J., 10.1007/s11075-005-9009-z, Numer. Algorithms 41 (2006), 219-238. (2006) Zbl1141.65031MR2222248DOI10.1007/s11075-005-9009-z
- Śmietański, M. J., 10.1016/j.amc.2007.03.075, Appl. Math. Comput. 193 (2007), 430-437. (2007) MR2385800DOI10.1016/j.amc.2007.03.075
- Sun, D., Han, J., 10.1137/S1052623494274970, SIAM J. Optim. 7 (1997), 463-480. (1997) Zbl0872.90087MR1443629DOI10.1137/S1052623494274970
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.