A method constructing density functions: the case of a generalized Rayleigh variable
Applications of Mathematics (2009)
- Volume: 54, Issue: 5, page 417-431
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topVodă, Viorel Gh.. "A method constructing density functions: the case of a generalized Rayleigh variable." Applications of Mathematics 54.5 (2009): 417-431. <http://eudml.org/doc/37830>.
@article{Vodă2009,
abstract = {In this paper we propose a new generalized Rayleigh distribution different from that introduced in Apl. Mat. 47 (1976), pp. 395–412. The construction makes use of the so-called “conservability approach” (see Kybernetika 25 (1989), pp. 209–215) namely, if $X$ is a positive continuous random variable with a finite mean-value $E(X)$, then a new density is set to be $f_1(x) = x f(x)/E(X)$, where $f(x)$ is the probability density function of $X$. The new generalized Rayleigh variable is obtained using a generalized form of the exponential distribution introduced by Isaic-Maniu and the present author as $f(x)$.},
author = {Vodă, Viorel Gh.},
journal = {Applications of Mathematics},
keywords = {generalized Rayleigh variable (GRV); generalized exponential (GE); generating differential equation (GDE); conservability; probability density function (p.d.f.); pseudo-Weibull variable; generalized Rayleigh variable (GRV); generalized exponential (GE); generating differential equation (GDE); conservability},
language = {eng},
number = {5},
pages = {417-431},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A method constructing density functions: the case of a generalized Rayleigh variable},
url = {http://eudml.org/doc/37830},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Vodă, Viorel Gh.
TI - A method constructing density functions: the case of a generalized Rayleigh variable
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 5
SP - 417
EP - 431
AB - In this paper we propose a new generalized Rayleigh distribution different from that introduced in Apl. Mat. 47 (1976), pp. 395–412. The construction makes use of the so-called “conservability approach” (see Kybernetika 25 (1989), pp. 209–215) namely, if $X$ is a positive continuous random variable with a finite mean-value $E(X)$, then a new density is set to be $f_1(x) = x f(x)/E(X)$, where $f(x)$ is the probability density function of $X$. The new generalized Rayleigh variable is obtained using a generalized form of the exponential distribution introduced by Isaic-Maniu and the present author as $f(x)$.
LA - eng
KW - generalized Rayleigh variable (GRV); generalized exponential (GE); generating differential equation (GDE); conservability; probability density function (p.d.f.); pseudo-Weibull variable; generalized Rayleigh variable (GRV); generalized exponential (GE); generating differential equation (GDE); conservability
UR - http://eudml.org/doc/37830
ER -
References
top- Ahuja, J. C., Nash, S. W., The generalized Gompertz-Verhulst family of distributions, Sankhya, Ser. A 39 (1967), 141-156. (1967) Zbl0173.20401MR0234502
- Ahuja, J. C., On certain properties of the generalized Gompertz distribution, Sankhya, Ser. B 31 (1969), 541-544. (1969)
- Babus, F., Kobi, A., Tiplica, T., Bacivarov, I. C., Current troubles of control charts application under non-Gaussian distributions, Proceedings of the 10th International Conference ``Quality and Dependability'', September 27-29, 2006, Sinaia, Romania MEDIAREX 21, Publ. House Bucharest (2006), 322-328. (2006)
- Barlow, R. E., Proschan, F., Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston New York (1975). (1975) Zbl0379.62080MR0438625
- Bârsan-Pipu, N., Isaic-Maniu, Al., Vodǎ, V. Gh., Defectarea. Modele statistice cu aplicaţii (The Failure. Statistical Models with Application), Editura Economicǎ Bucureşti (1999), Romanian. (1999)
- Blischke, W. R., Murthy, D. N. P., Reliability. Modeling, Prediction and Optimization, John Wiley & Sons New York (2000). (2000) Zbl0945.62102
- Bruscantini, S., Origin, features and use of the pseudo-normal distribution, Statistica 28 (1968), 102-123. (1968)
- Caulcutt, R., Achieving Quality Improvement. A Practical Guide, Chapman and Hall London (1995). (1995) Zbl0862.62075
- Ciechanowicz, K., Uogólniony rozklad Gamma i rozklad potęgówy jako rozklady trvalości elementów (Generalized Gamma distribution and power distribution as models for component durability), Archiwum Electrotehniki 21 (1972), 489-512 Polish. (1972) MR0334446
- Curelaru, L., Vodǎ, V. Gh., Some notes on Rayleigh distribution, Revista Colombiana de Matemáticas 9 (1975), 9-22. (1975) MR0400510
- D'Addario, R., Un metodo per la rappresentazione analitica delle distribuzioni statistiche (A method for analytical representation of statistical distributions), Ann. dell'Istituto di Statistica dell'Università di Bari 16 (1939), 36-45 Italian. (1939)
- D'Addario, R., Sulle repartizioni la cui media superiormente o inferiormente ``incompleta'' cresce linearmente col crescere della variabile distributiva (On distributions for which their ``incomplete'' mean-value is linearly increasing), Giornale degli Economisti ed Annali di Economia--Roma 11-12 (1969), 20-28 Italian. (1969)
- Deming, W. E., Statistical Adjustment of Data, Dover Publications Inc. New York (1964). (1964)
- Deming, W. E., On the probability as a basis for action, Am. Stat. 29 (1975), 146-152. (1975)
- Dobó, A., Reliability of ageing components ``Quality and Reliability''. Special Edition, Economisti ed Anali di Economia Roma (1976), 53-56. (1976)
- Dorin, Al. C., Al Isaic-Maniu, Vodǎ, V. Gh., Probleme statistice ale fiabilitǎţii. Aplicaţii în domeniul sculelor aşchietoare (Statistical Problems of Reliability. Cutting-tool Applications), Editura Economicǎ Bucureşti (1994), Romanian. (1994)
- Drane, J. W., Postelnicu, T., Vodǎ, V. Gh., New inferences on the Rayleigh distribution, Bull. Mathématique de la Societé des Sciences Mathématiques de Roumanie, Nouvelle Série 83 (1991), 235-244. (1991) MR1307689
- Drimlová, B., Přejímací plány pro Weibullovo rozdělení (Acceptance sampling plans for Weibull distribution), Research Report No. SVÚSS-73-01012 Běchovice (ČSSR) Běchovice (June 1973) Czech.
- Firkowicz, Sz., O potęgówym rozkladzie trwalości (On the power distribution), Archiwum Electrotehniki 18 (1969), 29-40 Polish. (1969)
- Giorski, A. C., 10.1109/TR.1968.5216949, IEEE Trans. Reliability R17 (1968), 202-203. (1968) DOI10.1109/TR.1968.5216949
- Guerrieri, G., Sopra un nouvo metodo concernente la determinazione dei parametri della distribuzione lognormale e delle distribuzioni pearsoniane del III e del V tipo (On a new method for estimating the parameters of lognormal distribution and of Pearsonian distribution of III a V type), Ann. dell'Istituto di Statistica dell'Università di Bari 34 (1969-1970), 55-110 Italian. (1970)
- Gupta, R. D., Kundu, D., Generalized exponential distribution: statistical inferences, J. Statist. Theory Appl. 1 (2002), 101-118. (2002) MR1952704
- Hunter, J. J., 10.1287/opre.15.6.1096, Operations Research 15 (1967), 1096-1108. (1967) DOI10.1287/opre.15.6.1096
- Iosifescu, M., Moineagu, C., Trebici, Vl., Ursianu, E., Micǎ Enciclopedie de Statisticǎ (A Little Statistical Encyclopedia), Editura Ştiinţificǎ şi Enciclopedicǎ Bucureşti (1985), Romanian. (1985)
- Isaic-Maniu, Al., Metoda Weibull. Aplicaţii (Weibull Method. Applications), Editura Academiei R. S. România Bucureşti (1983), Romanian. (1983)
- Isaic-Maniu, Al., Vodǎ, V. Gh., O nouǎ generalizare a repartiţiei putere (A new generalization of power distribution, Stud. Cerc. Calc. Econ. Cib. Econ. 29 1 (1995), 19-25 Romanian. (1995)
- Isaic-Maniu, Al., Vodǎ, V. Gh., O nouǎ generalizare a repartiţiei exponenţiale (A new generalization of exponential distribution), Stud. Cerc. Calc. Econ. Cib. Econ. 30 4 (1996), 9-17 Romanian. (1996) MR1454922
- Isaic-Maniu, Al., Vodǎ, V. Gh., Aspecte privind repartiţia Rayleigh (Some aspects regarding Rayleigh distribution), Stud. Cerc. Calc. Econ. Cib. Econ. 32 1 (1998), 5-13 Romanian. (1998) MR1319940
- Isaic-Maniu, Al., Vodǎ, V. Gh., Rayleigh distribution revisited, Econ. Comp. Econ. Cyb. Stud. Res. 34 (2000), 27-32. (2000)
- Jílek, M., Statistické toleranční meze (Statistical Tolerance Limits), SNTL -- Teoretická knižnice inženýra Praha (1988), Czech. (1988)
- Johnson, N. L., Kotz, S., Balakrishnan, N., Continuous Univariable Distributions. Vol. 1, 2nd Edition, John Wiley & Sons New York (1994). (1994) MR1299979
- Kundu, D., Raqab, M. Z., Generalized Rayleigh distribution: different methods of estimations, http://home.iitk.ac.in/ {kundu}/ (2004). (2004) MR2129172
- Hjorth, U., 10.2307/1268388, Technometrics 22 (1980), 99-112. (1980) MR0559684DOI10.2307/1268388
- Khan, M. S. H., 10.1002/bimj.4710290121, Biometrical J. 29 (1987), 121-127. (1987) Zbl0606.62015MR0883115DOI10.1002/bimj.4710290121
- Patel, J. K., Read, C. B., Handbook of the Normal Distribution (2nd edition, revised and expanded); Statistics: Textbooks and Monographs, Vol. 150, Marcel Dekker Inc. New York (1996). (1996) MR0664762
- Pereverzev, E. S., Random Processes in Parametric Models of Reliability, Academy of Ukraine, Institute of Technical Mechanics, Naukova Dumka Publ. House Kiev (1987), Russian. (1987) MR0913737
- Pollard, A., Rivoire, C., Fiabilité et statistique previsionelle. Méthode de Weibull, Eyrolles Paris (1971), French. (1971)
- Raqab, M. Z., Kundu, D., Burr type distribution: revisited, 2003. http://home.iitk.ac.in/kundu/, .
- Ravenis, J. V., II, A potentially universal probability density function for scientists and engineers, Proceedings of the International Conference on Quality Control, Tokyo, Sept. 1969 523-526.
- Rodriguez, R., Systems of frequency curves, In: Encyclopedia of Statistical Sciences, Vol. 3 S. Kotz, N. L. Johnson John Wiley & Sons New York (1983), 212-225. (1983) MR0719029
- Ryshyk, I. M., Gradstein, I. S., Tables of Series, Product and Integrals. 4th edition, Yu. V. Geronimus, M. Yu. Tseylin Acadmic Press New York (1965). (1965)
- Savageau, M. A., 10.1002/bimj.4710240402, Biometrical J. 24 (1982), 209-215. (1982) Zbl0493.62026MR0687870DOI10.1002/bimj.4710240402
- Spǎtaru, S., Galupa, A., Generalizarea unei repartiţii cu aplicaţii in teoria siguranţei (Generalization of a distribution with applications in reliability theory), Stud. Cerc. Econ. Cib. Econ. 32 1 (1988), 77-82 Romanian. (1988)
- M. El-Moniem Soleha, Sewilam, Iman A., Generalized Rayleigh distribution revisited. InterStat, http://interstat.statjournals.net/YEAR/2007/abstracts/0702006.pdf.
- Stacy, E. W., 10.1214/aoms/1177704481, Ann. Math. Stat. 28 (1962), 1187-1192. (1962) Zbl0121.36802MR0143277DOI10.1214/aoms/1177704481
- Subbotin, M. T., On the law of frequency of error, Moscow Recueil mathématique 31 (1923), 296-301. (1923)
- Taguchi, T., On a generalization of Gaussian distribution, Part. A, Ann. Inst. Statist. Math. (Tokyo) 30 (1978), 221-242. (1978) MR0514493
- Vodǎ, V. Gh., Inferential procedures on a generalized Rayleigh variate (I), Apl. Mat. 21 (1976), 395-412. (1976) MR0418319
- Vodǎ, V. Gh., Inferential procedures on a generalized Rayleigh variate (II), Apl. Mat. 21 (1976), 413-419. (1976) MR0418320
- Vodǎ, V. Gh., Some inferences on the generalized Gompertz distribution, Rev. Roum. Math. Pures. Appl. 25 (1980), 1267-1278. (1980) MR0598031
- Vodǎ, V. Gh., New models in durability tool-testing: pseudo Weibull distribution, Kybernetika 25 (1989), 209-215. (1989) MR1010183
- Vodǎ, V. Gh., A new generalization of Rayleigh distribution, Reliability: Theory & Applications 2 2 (2007), 47-56 http://www.gnedenko-forum.org/Journal/files/RTA_2_2007.pdf. (2007)
- Voit, E. O., 10.1002/bimj.4710340713, Biometrical J. 34 (1992), 855-878. (1992) DOI10.1002/bimj.4710340713
- Yu, Sh., Voit, E. O., 10.1002/bimj.4710370509, Biometrical J. 37 (1995), 595-609. (1995) Zbl0837.62097DOI10.1002/bimj.4710370509
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.