A method constructing density functions: the case of a generalized Rayleigh variable

Viorel Gh. Vodă

Applications of Mathematics (2009)

  • Volume: 54, Issue: 5, page 417-431
  • ISSN: 0862-7940

Abstract

top
In this paper we propose a new generalized Rayleigh distribution different from that introduced in Apl. Mat. 47 (1976), pp. 395–412. The construction makes use of the so-called “conservability approach” (see Kybernetika 25 (1989), pp. 209–215) namely, if X is a positive continuous random variable with a finite mean-value E ( X ) , then a new density is set to be f 1 ( x ) = x f ( x ) / E ( X ) , where f ( x ) is the probability density function of X . The new generalized Rayleigh variable is obtained using a generalized form of the exponential distribution introduced by Isaic-Maniu and the present author as f ( x ) .

How to cite

top

Vodă, Viorel Gh.. "A method constructing density functions: the case of a generalized Rayleigh variable." Applications of Mathematics 54.5 (2009): 417-431. <http://eudml.org/doc/37830>.

@article{Vodă2009,
abstract = {In this paper we propose a new generalized Rayleigh distribution different from that introduced in Apl. Mat. 47 (1976), pp. 395–412. The construction makes use of the so-called “conservability approach” (see Kybernetika 25 (1989), pp. 209–215) namely, if $X$ is a positive continuous random variable with a finite mean-value $E(X)$, then a new density is set to be $f_1(x) = x f(x)/E(X)$, where $f(x)$ is the probability density function of $X$. The new generalized Rayleigh variable is obtained using a generalized form of the exponential distribution introduced by Isaic-Maniu and the present author as $f(x)$.},
author = {Vodă, Viorel Gh.},
journal = {Applications of Mathematics},
keywords = {generalized Rayleigh variable (GRV); generalized exponential (GE); generating differential equation (GDE); conservability; probability density function (p.d.f.); pseudo-Weibull variable; generalized Rayleigh variable (GRV); generalized exponential (GE); generating differential equation (GDE); conservability},
language = {eng},
number = {5},
pages = {417-431},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A method constructing density functions: the case of a generalized Rayleigh variable},
url = {http://eudml.org/doc/37830},
volume = {54},
year = {2009},
}

TY - JOUR
AU - Vodă, Viorel Gh.
TI - A method constructing density functions: the case of a generalized Rayleigh variable
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 5
SP - 417
EP - 431
AB - In this paper we propose a new generalized Rayleigh distribution different from that introduced in Apl. Mat. 47 (1976), pp. 395–412. The construction makes use of the so-called “conservability approach” (see Kybernetika 25 (1989), pp. 209–215) namely, if $X$ is a positive continuous random variable with a finite mean-value $E(X)$, then a new density is set to be $f_1(x) = x f(x)/E(X)$, where $f(x)$ is the probability density function of $X$. The new generalized Rayleigh variable is obtained using a generalized form of the exponential distribution introduced by Isaic-Maniu and the present author as $f(x)$.
LA - eng
KW - generalized Rayleigh variable (GRV); generalized exponential (GE); generating differential equation (GDE); conservability; probability density function (p.d.f.); pseudo-Weibull variable; generalized Rayleigh variable (GRV); generalized exponential (GE); generating differential equation (GDE); conservability
UR - http://eudml.org/doc/37830
ER -

References

top
  1. Ahuja, J. C., Nash, S. W., The generalized Gompertz-Verhulst family of distributions, Sankhya, Ser. A 39 (1967), 141-156. (1967) Zbl0173.20401MR0234502
  2. Ahuja, J. C., On certain properties of the generalized Gompertz distribution, Sankhya, Ser. B 31 (1969), 541-544. (1969) 
  3. Babus, F., Kobi, A., Tiplica, T., Bacivarov, I. C., Current troubles of control charts application under non-Gaussian distributions, Proceedings of the 10th International Conference ``Quality and Dependability'', September 27-29, 2006, Sinaia, Romania MEDIAREX 21, Publ. House Bucharest (2006), 322-328. (2006) 
  4. Barlow, R. E., Proschan, F., Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston New York (1975). (1975) Zbl0379.62080MR0438625
  5. Bârsan-Pipu, N., Isaic-Maniu, Al., Vodǎ, V. Gh., Defectarea. Modele statistice cu aplicaţii (The Failure. Statistical Models with Application), Editura Economicǎ Bucureşti (1999), Romanian. (1999) 
  6. Blischke, W. R., Murthy, D. N. P., Reliability. Modeling, Prediction and Optimization, John Wiley & Sons New York (2000). (2000) Zbl0945.62102
  7. Bruscantini, S., Origin, features and use of the pseudo-normal distribution, Statistica 28 (1968), 102-123. (1968) 
  8. Caulcutt, R., Achieving Quality Improvement. A Practical Guide, Chapman and Hall London (1995). (1995) Zbl0862.62075
  9. Ciechanowicz, K., Uogólniony rozklad Gamma i rozklad potęgówy jako rozklady trvalości elementów (Generalized Gamma distribution and power distribution as models for component durability), Archiwum Electrotehniki 21 (1972), 489-512 Polish. (1972) MR0334446
  10. Curelaru, L., Vodǎ, V. Gh., Some notes on Rayleigh distribution, Revista Colombiana de Matemáticas 9 (1975), 9-22. (1975) MR0400510
  11. D'Addario, R., Un metodo per la rappresentazione analitica delle distribuzioni statistiche (A method for analytical representation of statistical distributions), Ann. dell'Istituto di Statistica dell'Università di Bari 16 (1939), 36-45 Italian. (1939) 
  12. D'Addario, R., Sulle repartizioni la cui media superiormente o inferiormente ``incompleta'' cresce linearmente col crescere della variabile distributiva (On distributions for which their ``incomplete'' mean-value is linearly increasing), Giornale degli Economisti ed Annali di Economia--Roma 11-12 (1969), 20-28 Italian. (1969) 
  13. Deming, W. E., Statistical Adjustment of Data, Dover Publications Inc. New York (1964). (1964) 
  14. Deming, W. E., On the probability as a basis for action, Am. Stat. 29 (1975), 146-152. (1975) 
  15. Dobó, A., Reliability of ageing components ``Quality and Reliability''. Special Edition, Economisti ed Anali di Economia Roma (1976), 53-56. (1976) 
  16. Dorin, Al. C., Al Isaic-Maniu, Vodǎ, V. Gh., Probleme statistice ale fiabilitǎţii. Aplicaţii în domeniul sculelor aşchietoare (Statistical Problems of Reliability. Cutting-tool Applications), Editura Economicǎ Bucureşti (1994), Romanian. (1994) 
  17. Drane, J. W., Postelnicu, T., Vodǎ, V. Gh., New inferences on the Rayleigh distribution, Bull. Mathématique de la Societé des Sciences Mathématiques de Roumanie, Nouvelle Série 83 (1991), 235-244. (1991) MR1307689
  18. Drimlová, B., Přejímací plány pro Weibullovo rozdělení (Acceptance sampling plans for Weibull distribution), Research Report No. SVÚSS-73-01012 Běchovice (ČSSR) Běchovice (June 1973) Czech. 
  19. Firkowicz, Sz., O potęgówym rozkladzie trwalości (On the power distribution), Archiwum Electrotehniki 18 (1969), 29-40 Polish. (1969) 
  20. Giorski, A. C., 10.1109/TR.1968.5216949, IEEE Trans. Reliability R17 (1968), 202-203. (1968) DOI10.1109/TR.1968.5216949
  21. Guerrieri, G., Sopra un nouvo metodo concernente la determinazione dei parametri della distribuzione lognormale e delle distribuzioni pearsoniane del III e del V tipo (On a new method for estimating the parameters of lognormal distribution and of Pearsonian distribution of III a V type), Ann. dell'Istituto di Statistica dell'Università di Bari 34 (1969-1970), 55-110 Italian. (1970) 
  22. Gupta, R. D., Kundu, D., Generalized exponential distribution: statistical inferences, J. Statist. Theory Appl. 1 (2002), 101-118. (2002) MR1952704
  23. Hunter, J. J., 10.1287/opre.15.6.1096, Operations Research 15 (1967), 1096-1108. (1967) DOI10.1287/opre.15.6.1096
  24. Iosifescu, M., Moineagu, C., Trebici, Vl., Ursianu, E., Micǎ Enciclopedie de Statisticǎ (A Little Statistical Encyclopedia), Editura Ştiinţificǎ şi Enciclopedicǎ Bucureşti (1985), Romanian. (1985) 
  25. Isaic-Maniu, Al., Metoda Weibull. Aplicaţii (Weibull Method. Applications), Editura Academiei R. S. România Bucureşti (1983), Romanian. (1983) 
  26. Isaic-Maniu, Al., Vodǎ, V. Gh., O nouǎ generalizare a repartiţiei putere (A new generalization of power distribution, Stud. Cerc. Calc. Econ. Cib. Econ. 29 1 (1995), 19-25 Romanian. (1995) 
  27. Isaic-Maniu, Al., Vodǎ, V. Gh., O nouǎ generalizare a repartiţiei exponenţiale (A new generalization of exponential distribution), Stud. Cerc. Calc. Econ. Cib. Econ. 30 4 (1996), 9-17 Romanian. (1996) MR1454922
  28. Isaic-Maniu, Al., Vodǎ, V. Gh., Aspecte privind repartiţia Rayleigh (Some aspects regarding Rayleigh distribution), Stud. Cerc. Calc. Econ. Cib. Econ. 32 1 (1998), 5-13 Romanian. (1998) MR1319940
  29. Isaic-Maniu, Al., Vodǎ, V. Gh., Rayleigh distribution revisited, Econ. Comp. Econ. Cyb. Stud. Res. 34 (2000), 27-32. (2000) 
  30. Jílek, M., Statistické toleranční meze (Statistical Tolerance Limits), SNTL -- Teoretická knižnice inženýra Praha (1988), Czech. (1988) 
  31. Johnson, N. L., Kotz, S., Balakrishnan, N., Continuous Univariable Distributions. Vol. 1, 2nd Edition, John Wiley & Sons New York (1994). (1994) MR1299979
  32. Kundu, D., Raqab, M. Z., Generalized Rayleigh distribution: different methods of estimations, http://home.iitk.ac.in/ {kundu}/ (2004). (2004) MR2129172
  33. Hjorth, U., 10.2307/1268388, Technometrics 22 (1980), 99-112. (1980) MR0559684DOI10.2307/1268388
  34. Khan, M. S. H., 10.1002/bimj.4710290121, Biometrical J. 29 (1987), 121-127. (1987) Zbl0606.62015MR0883115DOI10.1002/bimj.4710290121
  35. Patel, J. K., Read, C. B., Handbook of the Normal Distribution (2nd edition, revised and expanded); Statistics: Textbooks and Monographs, Vol. 150, Marcel Dekker Inc. New York (1996). (1996) MR0664762
  36. Pereverzev, E. S., Random Processes in Parametric Models of Reliability, Academy of Ukraine, Institute of Technical Mechanics, Naukova Dumka Publ. House Kiev (1987), Russian. (1987) MR0913737
  37. Pollard, A., Rivoire, C., Fiabilité et statistique previsionelle. Méthode de Weibull, Eyrolles Paris (1971), French. (1971) 
  38. Raqab, M. Z., Kundu, D., Burr type X distribution: revisited, 2003. http://home.iitk.ac.in/kundu/, . 
  39. Ravenis, J. V., II, A potentially universal probability density function for scientists and engineers, Proceedings of the International Conference on Quality Control, Tokyo, Sept. 1969 523-526. 
  40. Rodriguez, R., Systems of frequency curves, In: Encyclopedia of Statistical Sciences, Vol. 3 S. Kotz, N. L. Johnson John Wiley & Sons New York (1983), 212-225. (1983) MR0719029
  41. Ryshyk, I. M., Gradstein, I. S., Tables of Series, Product and Integrals. 4th edition, Yu. V. Geronimus, M. Yu. Tseylin Acadmic Press New York (1965). (1965) 
  42. Savageau, M. A., 10.1002/bimj.4710240402, Biometrical J. 24 (1982), 209-215. (1982) Zbl0493.62026MR0687870DOI10.1002/bimj.4710240402
  43. Spǎtaru, S., Galupa, A., Generalizarea unei repartiţii cu aplicaţii in teoria siguranţei (Generalization of a distribution with applications in reliability theory), Stud. Cerc. Econ. Cib. Econ. 32 1 (1988), 77-82 Romanian. (1988) 
  44. M. El-Moniem Soleha, Sewilam, Iman A., Generalized Rayleigh distribution revisited. InterStat, http://interstat.statjournals.net/YEAR/2007/abstracts/0702006.pdf. 
  45. Stacy, E. W., 10.1214/aoms/1177704481, Ann. Math. Stat. 28 (1962), 1187-1192. (1962) Zbl0121.36802MR0143277DOI10.1214/aoms/1177704481
  46. Subbotin, M. T., On the law of frequency of error, Moscow Recueil mathématique 31 (1923), 296-301. (1923) 
  47. Taguchi, T., On a generalization of Gaussian distribution, Part. A, Ann. Inst. Statist. Math. (Tokyo) 30 (1978), 221-242. (1978) MR0514493
  48. Vodǎ, V. Gh., Inferential procedures on a generalized Rayleigh variate (I), Apl. Mat. 21 (1976), 395-412. (1976) MR0418319
  49. Vodǎ, V. Gh., Inferential procedures on a generalized Rayleigh variate (II), Apl. Mat. 21 (1976), 413-419. (1976) MR0418320
  50. Vodǎ, V. Gh., Some inferences on the generalized Gompertz distribution, Rev. Roum. Math. Pures. Appl. 25 (1980), 1267-1278. (1980) MR0598031
  51. Vodǎ, V. Gh., New models in durability tool-testing: pseudo Weibull distribution, Kybernetika 25 (1989), 209-215. (1989) MR1010183
  52. Vodǎ, V. Gh., A new generalization of Rayleigh distribution, Reliability: Theory & Applications 2 2 (2007), 47-56 http://www.gnedenko-forum.org/Journal/files/RTA_2_2007.pdf. (2007) 
  53. Voit, E. O., 10.1002/bimj.4710340713, Biometrical J. 34 (1992), 855-878. (1992) DOI10.1002/bimj.4710340713
  54. Yu, Sh., Voit, E. O., 10.1002/bimj.4710370509, Biometrical J. 37 (1995), 595-609. (1995) Zbl0837.62097DOI10.1002/bimj.4710370509

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.