A globally convergent non-interior point algorithm with full Newton step for second-order cone programming
Liang Fang; Guoping He; Li Sun
Applications of Mathematics (2009)
- Volume: 54, Issue: 5, page 447-464
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFang, Liang, He, Guoping, and Sun, Li. "A globally convergent non-interior point algorithm with full Newton step for second-order cone programming." Applications of Mathematics 54.5 (2009): 447-464. <http://eudml.org/doc/37832>.
@article{Fang2009,
abstract = {A non-interior point algorithm based on projection for second-order cone programming problems is proposed and analyzed. The main idea of the algorithm is that we cast the complementary equation in the primal-dual optimality conditions as a projection equation. By using this reformulation, we only need to solve a system of linear equations with the same coefficient matrix and compute two simple projections at each iteration, without performing any line search. This algorithm can start from an arbitrary point, and does not require the row vectors of $A$ to be linearly independent. We prove that our algorithm is globally convergent under weak conditions. Preliminary numerical results demonstrate the effectiveness of our algorithm.},
author = {Fang, Liang, He, Guoping, Sun, Li},
journal = {Applications of Mathematics},
keywords = {non-interior point algorithm; second-order cone programming; Jordan product; optimality condition; central path; non-interior point algorithm; second-order cone programming; Jordan product; optimality condition; central path},
language = {eng},
number = {5},
pages = {447-464},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A globally convergent non-interior point algorithm with full Newton step for second-order cone programming},
url = {http://eudml.org/doc/37832},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Fang, Liang
AU - He, Guoping
AU - Sun, Li
TI - A globally convergent non-interior point algorithm with full Newton step for second-order cone programming
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 5
SP - 447
EP - 464
AB - A non-interior point algorithm based on projection for second-order cone programming problems is proposed and analyzed. The main idea of the algorithm is that we cast the complementary equation in the primal-dual optimality conditions as a projection equation. By using this reformulation, we only need to solve a system of linear equations with the same coefficient matrix and compute two simple projections at each iteration, without performing any line search. This algorithm can start from an arbitrary point, and does not require the row vectors of $A$ to be linearly independent. We prove that our algorithm is globally convergent under weak conditions. Preliminary numerical results demonstrate the effectiveness of our algorithm.
LA - eng
KW - non-interior point algorithm; second-order cone programming; Jordan product; optimality condition; central path; non-interior point algorithm; second-order cone programming; Jordan product; optimality condition; central path
UR - http://eudml.org/doc/37832
ER -
References
top- Alizadeh, F., Goldfarb, D., 10.1007/s10107-002-0339-5, Math. Program. 95 (2003), 3-51. (2003) Zbl1153.90522MR1971381DOI10.1007/s10107-002-0339-5
- Benson, H. Y., Vanderbei, R. J., 10.1007/s10107-002-0350-x, Math. Program. Ser. B 95 (2003), 279-302. (2003) Zbl1030.90138MR1976482DOI10.1007/s10107-002-0350-x
- Ben-Tal, A., Nemirovski, A., 10.1287/moor.26.2.193.10561, Math. Oper. Res. 26 (2001), 193-205. (2001) Zbl1082.90133MR1895823DOI10.1287/moor.26.2.193.10561
- Chen, X. D., Sun, D., Sun, J., 10.1023/A:1022996819381, Comput. Optim. Appl. 25 (2003), 39-56. (2003) Zbl1038.90084MR1996662DOI10.1023/A:1022996819381
- Choi, I. C., Monma, C. L., Shanno, D., 10.1287/ijoc.2.4.304, ORSA J. Comput. 2 (1990), 304-311. (1990) DOI10.1287/ijoc.2.4.304
- Faraut, J., Korányi, A., Analysis on Symmetric Cones, Oxford University Press Oxford (1994). (1994) MR1446489
- Faybusovich, L., 10.1023/A:1009701824047, Positivity 1 (1997), 331-357. (1997) Zbl0973.90095MR1660399DOI10.1023/A:1009701824047
- Faybusovich, L., 10.1016/S0377-0427(97)00153-2, J. Comput. Appl. Math. 86 (1997), 149-175. (1997) Zbl0889.65066MR1491432DOI10.1016/S0377-0427(97)00153-2
- Fukushima, M., Luo, Z.-Q., Tseng, P., 10.1137/S1052623400380365, SIAM J. Optim. 12 (2002), 436-460. (2002) MR1885570DOI10.1137/S1052623400380365
- Han, Q. M., 10.1016/S0096-3003(97)10113-8, Appl. Math. Comput. 95 (1998), 275-289. (1998) Zbl0938.90054MR1633814DOI10.1016/S0096-3003(97)10113-8
- Hayashi, S., Yamashita, N., Fukushima, M., 10.1137/S1052623403421516, SIAM J. Optim. 15 (2005), 593-615. (2005) Zbl1114.90139MR2144183DOI10.1137/S1052623403421516
- He, B. S., Liao, L. Z., Han, D. R., Yang, H., 10.1007/s101070100280, Math. Program. 92 (2002), 103-118. (2002) MR1892298DOI10.1007/s101070100280
- Huang, Z., Gu, W., 10.1007/s00245-007-9004-y, Appl. Math. Optim. 57 (2008), 17-29. (2008) Zbl1190.90236MR2373004DOI10.1007/s00245-007-9004-y
- Kim, S., Kojima, M., 10.1080/10556780108805819, Optim. Methods Softw. 15 (2001), 201-224. (2001) MR1892585DOI10.1080/10556780108805819
- Kuo, Y. J., Mittelmann, H. D., 10.1023/B:COAP.0000033964.95511.23, Comput. Optim. Appl. 28 (2004), 255-285. (2004) Zbl1084.90046MR2080003DOI10.1023/B:COAP.0000033964.95511.23
- Liu, Y., Zhang, L., Wang, Y., 10.1007/BF02896466, J. Appl. Math. Comput. 22 (2006), 133-148. (2006) Zbl1132.90353MR2248446DOI10.1007/BF02896466
- Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H., Applications of second order cone programming, Linear Algebra Appl. 284 (1998), 193-228. (1998) Zbl0946.90050MR1655138
- Monteiro, R. D. C., Tsuchiya, T., 10.1007/PL00011378, Math. Program. 88 (2000), 61-83. (2000) Zbl0967.65077MR1765893DOI10.1007/PL00011378
- Monteiro, R. D. C., Zhang, Y., 10.1007/BF01580085, Math. Program. 81 (1998), 281-299. (1998) MR1617748DOI10.1007/BF01580085
- Nesterov, Yu. E., Nemirovskii, A. S., Interior-Point Polynomial Algorithms in Convex Programming, SIAM Philadelphia (1994). (1994) Zbl0824.90112MR1258086
- Rangarajan, B. K., 10.1137/040606557, SIAM J. Optim. 16 (2006), 1211-1229. (2006) Zbl1131.90043MR2219140DOI10.1137/040606557
- Rangarajan, B., Todd, M. J., Convergence of infeasible-interior-point methods for self-scaled conic programming. Technical Report 1388, School of OR & IE, Cornell University.
- Schmieta, S. H., Alizadeh, F., 10.1007/s10107-003-0380-z, Math. Program. 96 (2003), 409-438. (2003) MR1993457DOI10.1007/s10107-003-0380-z
- Schmieta, S. H., Alizadeh, F., 10.1287/moor.26.3.543.10582, Math. Oper. Res. 26 (2001), 543-564. (2001) Zbl1073.90572MR1849884DOI10.1287/moor.26.3.543.10582
- Schmieta, S. H., Alizadeh, F., Extension of commutative class of primal-dual interior point algorithms to symmetric cones. Technical Report RRR 13-99, RUTCOR, Rutgers University, August 1999.
- Sun, D., Sun, J., 10.1007/s10107-005-0577-4, Math. Program., Ser. A 103 (2005), 575-581. (2005) Zbl1099.90062MR2166550DOI10.1007/s10107-005-0577-4
- Todd, M., 10.1017/S0962492901000071, Acta Numerica 10 (2001), 515-560. (2001) Zbl1105.65334MR2009698DOI10.1017/S0962492901000071
- Toh, K. C., Todd, M. J., Tütüncü, R. H., 10.1080/10556789908805762, Optim. Methods Softw. 11 (1999), 545-581. (1999) MR1778429DOI10.1080/10556789908805762
- Tsuchiya, T., 10.1080/10556789908805750, Optim. Methods Softw. 11 (1999), 141-182. (1999) Zbl0957.90129MR1777456DOI10.1080/10556789908805750
- Tsuchiya, T., A polynomial primal-dual path-following algorithm for second-order cone programming. Technical Report No. 649, The Institute of Statistical Mathematics Tokyo (1997). (1997)
- Wang, S. L., Yang, H., He, B. S., 10.1016/S0898-1221(00)85004-X, Comput. Math. Appl. 40 (2000), 927-937. (2000) Zbl0959.49009MR1781888DOI10.1016/S0898-1221(00)85004-X
- Wright, S. J., Primal-Dual Interior Point Methods, Society for Industrial and Applied Mathematics (SIAM) Philadelphia (1997). (1997) Zbl0863.65031MR1422257
- Xue, G. L., Ye, Y. Y., 10.1137/S1052623495288362, SIAM J. Optim. 7 (1997), 1017-1036. (1997) Zbl0885.68074MR1479612DOI10.1137/S1052623495288362
- Zhang, Y., 10.1137/S1052623495296115, SIAM J. Optim. 8 (1998), 365-386. (1998) Zbl0913.65050MR1618806DOI10.1137/S1052623495296115
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.