A unified approach to singular problems arising in the membrane theory
Irena Rachůnková; Gernot Pulverer; Ewa B. Weinmüller
Applications of Mathematics (2010)
- Volume: 55, Issue: 1, page 47-75
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topRachůnková, Irena, Pulverer, Gernot, and Weinmüller, Ewa B.. "A unified approach to singular problems arising in the membrane theory." Applications of Mathematics 55.1 (2010): 47-75. <http://eudml.org/doc/37838>.
@article{Rachůnková2010,
abstract = {We consider the singular boundary value problem \[ (t^nu^\{\prime \}(t))^\{\prime \}+ t^nf(t,u(t))=0, \quad \lim \_\{t\rightarrow 0+\}t^nu^\{\prime \}(t)=0, \quad a\_0u(1)+a\_1u^\{\prime \}(1-)=A, \]
where $f(t,x)$ is a given continuous function defined on the set $(0,1]\times (0,\infty )$ which can have a time singularity at $t=0$ and a space singularity at $x=0$. Moreover, $n\in \mathbb \{N\}$, $n\ge 2$, and $a_0$, $a_1$, $A$ are real constants such that $a_0\in (0,\infty )$, whereas $a_1,A\in [0,\infty )$. The main aim of this paper is to discuss the existence of solutions to the above problem and apply the general results to cover certain classes of singular problems arising in the theory of shallow membrane caps, where we are especially interested in characterizing positive solutions. We illustrate the analytical findings by numerical simulations based on polynomial collocation.},
author = {Rachůnková, Irena, Pulverer, Gernot, Weinmüller, Ewa B.},
journal = {Applications of Mathematics},
keywords = {singular mixed boundary value problem; positive solution; shallow membrane; collocation method; lower and upper functions; singular mixed boundary value problem; positive solution; shallow membrane; collocation method; lower and upper functions},
language = {eng},
number = {1},
pages = {47-75},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A unified approach to singular problems arising in the membrane theory},
url = {http://eudml.org/doc/37838},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Rachůnková, Irena
AU - Pulverer, Gernot
AU - Weinmüller, Ewa B.
TI - A unified approach to singular problems arising in the membrane theory
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 1
SP - 47
EP - 75
AB - We consider the singular boundary value problem \[ (t^nu^{\prime }(t))^{\prime }+ t^nf(t,u(t))=0, \quad \lim _{t\rightarrow 0+}t^nu^{\prime }(t)=0, \quad a_0u(1)+a_1u^{\prime }(1-)=A, \]
where $f(t,x)$ is a given continuous function defined on the set $(0,1]\times (0,\infty )$ which can have a time singularity at $t=0$ and a space singularity at $x=0$. Moreover, $n\in \mathbb {N}$, $n\ge 2$, and $a_0$, $a_1$, $A$ are real constants such that $a_0\in (0,\infty )$, whereas $a_1,A\in [0,\infty )$. The main aim of this paper is to discuss the existence of solutions to the above problem and apply the general results to cover certain classes of singular problems arising in the theory of shallow membrane caps, where we are especially interested in characterizing positive solutions. We illustrate the analytical findings by numerical simulations based on polynomial collocation.
LA - eng
KW - singular mixed boundary value problem; positive solution; shallow membrane; collocation method; lower and upper functions; singular mixed boundary value problem; positive solution; shallow membrane; collocation method; lower and upper functions
UR - http://eudml.org/doc/37838
ER -
References
top- Agarwal, R. P., O'Regan, D., 10.1016/S0020-7462(03)00041-6, Int. J. Non-Linear Mech. 39 (2004), 779-784. (2004) MR2036912DOI10.1016/S0020-7462(03)00041-6
- Agarwal, R. P., O'Regan, D., Singular problems arising in circular membrane theory, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 10 (2003), 965-972. (2003) Zbl1056.34029MR2008758
- Agarwal, R. P., Staněk, S., 10.1016/S0898-1221(03)90239-2, Comput. Math. Appl. 46 (2003), 1827-1837. (2003) MR2018768DOI10.1016/S0898-1221(03)90239-2
- Auzinger, W., Koch, O., Weinmüller, E., 10.1023/A:1021151821275, Numer. Algorithms 31 (2002), 5-25. (2002) MR1950909DOI10.1023/A:1021151821275
- Auzinger, W., Kneisl, G., Koch, O., Weinmüller, E., 10.1023/A:1025531130904, Numer. Algorithms 33 (2003), 27-39. (2003) MR2005549DOI10.1023/A:1025531130904
- Auzinger, W., Koch, O., Weinmüller, E., 10.1137/S0036142902418928, SIAM J. Numer. Anal. 42 (2005), 2366-2386. (2005) MR2139397DOI10.1137/S0036142902418928
- Auzinger, W., Koch, O., Weinmüller, E., 10.1016/j.cam.2004.10.013, J. Comput. Appl. Math. 180 (2005), 213-227. (2005) MR2141496DOI10.1016/j.cam.2004.10.013
- Baxley, J. V., Robinson, S. B., 10.1016/S0377-0427(97)00216-1, J. Comput. Appl. Math. 88 (1998), 203-224. (1998) Zbl0928.74054MR1609149DOI10.1016/S0377-0427(97)00216-1
- Budd, C. J., Koch, O., Weinmüller, E., Self-Similar Blow-Up in Nonlinear {PDE}s. AURORA TR-2004-15, Institute for Analysis and Scientific Computing, Vienna Univ. of Technology, Austria (2004), available at http://www.vcpc.univie.ac.at/aurora/publications/. (2004)
- Budd, C. J., Koch, O., Weinmüller, E., 10.1007/s00607-005-0157-8, Computing 77 (2006), 335-346. (2006) MR2244946DOI10.1007/s00607-005-0157-8
- Budd, C. J., Koch, O., Weinmüller, E., 10.1016/j.apnum.2005.04.012, Appl. Numer. Math. 56 (2006), 413-422. (2006) MR2207599DOI10.1016/j.apnum.2005.04.012
- Coster, C. De, Habets, P., 10.1016/S1874-5725(00)80004-8, Handbook of Differential Equations, Ordinary Differential Equations, Vol. I A. Caňada, P. Drábek, A. Fonda Elsevier/North Holland Amsterdam (2004), 69-161. (2004) MR2166490DOI10.1016/S1874-5725(00)80004-8
- Hoog, F. de, Weiss, R., 10.1137/0715013, SIAM J. Numer. Anal. 15 (1978), 198-217. (1978) Zbl0398.65051MR0468203DOI10.1137/0715013
- Dickey, R. W., 10.1090/qam/1012280, Q. Appl. Math. 47 (1989), 571-581. (1989) Zbl0683.73022MR1012280DOI10.1090/qam/1012280
- Johnson, K. N., 10.1090/qam/1466147, Q. Appl. Math. 55 (1997), 537-550. (1997) Zbl0885.73027MR1466147DOI10.1090/qam/1466147
- Kannan, R., O'Regan, D., Singular and nonsingular boundary value problems with sign changing nonlinearities, J. Inequal. Appl. 5 (2000), 621-637. (2000) Zbl0976.34017MR1812574
- Kiguradze, I. T., Shekhter, B. L., Singular boundary value problems for second order ordinary differential equations, Itogi Nauki Tekh., Ser. Sovrm. Probl. Mat. 30 (1987), 105-201 Russian. (1987) Zbl0631.34021MR0925830
- Kitzhofer, G., Numerical treatment of implicit singular {BVP}s, PhD. Thesis Institute for Analysis and Scientific Computing, Vienna Univ. of Technology, Austria. In preparation.
- Kitzhofer, G., Koch, O., Weinmüller, E., Collocation methods for the computation of bubble-type solutions of a singular boundary value problem in hydrodynamics, J. Sci. Comput (to appear). Available at http://www.math.tuwien.ac.at/ {ewa}. MR2335788
- Koch, O., 10.1007/s00211-005-0617-2, Numer. Math. 101 (2005), 143-164. (2005) Zbl1076.65073MR2194722DOI10.1007/s00211-005-0617-2
- Rachůnková, I., Koch, O., Pulverer, G., Weinmüller, E., 10.1016/j.jmaa.2006.10.006, J. Math. Anal. Appl. 332 (2007), 523-541. (2007) MR2319681DOI10.1016/j.jmaa.2006.10.006
- Rachůnková, I., Staněk, S., Tvrdý, M., Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations. Handbook of Differential Equations. Ordinary Differential Equations, Vol. 3, A. Caňada, P. Drábek, A. Fonda Elsevier Amsterdam (2006). (2006) MR2457638
- Ascher, U. M., Mattheij, R. M. M., Russell, R. D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Prentice-Hall Englewood Cliffs (1988). (1988) Zbl0671.65063MR1000177
- Weinmüller, E., 10.1137/0723074, SIAM J. Numer. Anal. 23 (1986), 1062-1095. (1986) MR0859018DOI10.1137/0723074
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.