On existence of positive periodic solutions of a kind of Rayleigh equation with a deviating argument
Applications of Mathematics (2010)
- Volume: 55, Issue: 3, page 189-196
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhou, Yinggao, and Wu, Min. "On existence of positive periodic solutions of a kind of Rayleigh equation with a deviating argument." Applications of Mathematics 55.3 (2010): 189-196. <http://eudml.org/doc/37843>.
@article{Zhou2010,
abstract = {The existence of positive periodic solutions for a kind of Rayleigh equation with a deviating argument \[ x^\{\prime \prime \}(t)+ f(x^\{\prime \}(t))+ g(t,x(t-\tau (t)))= p(t) \]
is studied. Using the coincidence degree theory, some sufficient conditions on the existence of positive periodic solutions are obtained.},
author = {Zhou, Yinggao, Wu, Min},
journal = {Applications of Mathematics},
keywords = {Rayleigh equations; positive periodic solution; a priori estimate; Rayleigh equations; positive periodic solution; a priori estimate},
language = {eng},
number = {3},
pages = {189-196},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On existence of positive periodic solutions of a kind of Rayleigh equation with a deviating argument},
url = {http://eudml.org/doc/37843},
volume = {55},
year = {2010},
}
TY - JOUR
AU - Zhou, Yinggao
AU - Wu, Min
TI - On existence of positive periodic solutions of a kind of Rayleigh equation with a deviating argument
JO - Applications of Mathematics
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 189
EP - 196
AB - The existence of positive periodic solutions for a kind of Rayleigh equation with a deviating argument \[ x^{\prime \prime }(t)+ f(x^{\prime }(t))+ g(t,x(t-\tau (t)))= p(t) \]
is studied. Using the coincidence degree theory, some sufficient conditions on the existence of positive periodic solutions are obtained.
LA - eng
KW - Rayleigh equations; positive periodic solution; a priori estimate; Rayleigh equations; positive periodic solution; a priori estimate
UR - http://eudml.org/doc/37843
ER -
References
top- Atici, F. M., Guseinov, G. Sh., 10.1016/S0377-0427(00)00438-6, J. Comput. Appl. Math. 132 (2001), 341-356. (2001) Zbl0993.34022MR1840633DOI10.1016/S0377-0427(00)00438-6
- Gaines, R. E., Mawhin, J. L., Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Mathematics, No. 568, Springer Berlin-Heidelberg-New York (1977). (1977) MR0637067
- Jiang, D., Chu, J., Zhang, M., 10.1016/j.jde.2004.10.031, J. Differ. Equations 211 (2005), 282-302. (2005) Zbl1074.34048MR2125544DOI10.1016/j.jde.2004.10.031
- Li, F., Liang, Z., 10.1016/j.aml.2005.02.014, Appl. Math. Lett. 18 (2005), 1256-1264. (2005) Zbl1088.34038MR2170881DOI10.1016/j.aml.2005.02.014
- Lin, X., Li, X., Jiang, D., 10.1016/j.camwa.2005.08.030, Comput. Math. Appl. 51 (2006), 507-514. (2006) MR2207437DOI10.1016/j.camwa.2005.08.030
- Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer New York (1989). (1989) Zbl0676.58017MR0982267
- Yang, X., 10.1016/j.na.2005.03.013, Nonlinear Anal., Theory Methods Appl. 62 (2005), 107-116. (2005) Zbl1077.34025MR2139358DOI10.1016/j.na.2005.03.013
- Zhang, Z., Wang, J., 10.1016/S0022-247X(02)00538-3, J. Math. Anal. Appl. 281 (2003), 99-107. (2003) Zbl1030.34024MR1980077DOI10.1016/S0022-247X(02)00538-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.