On a class of Szász-Mirakyan type operators

Zbigniew Walczak

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 3, page 705-716
  • ISSN: 0011-4642

Abstract

top
The actual construction of the Szász-Mirakyan operators and its various modifications require estimations of infinite series which in a certain sense restrict their usefulness from the computational point of view. Thus the question arises whether the Szász-Mirakyan operators and their generalizations cannot be replaced by a finite sum. In connection with this question we propose a new family of linear positive operators.

How to cite

top

Walczak, Zbigniew. "On a class of Szász-Mirakyan type operators." Czechoslovak Mathematical Journal 58.3 (2008): 705-716. <http://eudml.org/doc/37862>.

@article{Walczak2008,
abstract = {The actual construction of the Szász-Mirakyan operators and its various modifications require estimations of infinite series which in a certain sense restrict their usefulness from the computational point of view. Thus the question arises whether the Szász-Mirakyan operators and their generalizations cannot be replaced by a finite sum. In connection with this question we propose a new family of linear positive operators.},
author = {Walczak, Zbigniew},
journal = {Czechoslovak Mathematical Journal},
keywords = {linear positive operator; polynomial weighted space; linear positive operator; polynomial weighted space},
language = {eng},
number = {3},
pages = {705-716},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a class of Szász-Mirakyan type operators},
url = {http://eudml.org/doc/37862},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Walczak, Zbigniew
TI - On a class of Szász-Mirakyan type operators
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 705
EP - 716
AB - The actual construction of the Szász-Mirakyan operators and its various modifications require estimations of infinite series which in a certain sense restrict their usefulness from the computational point of view. Thus the question arises whether the Szász-Mirakyan operators and their generalizations cannot be replaced by a finite sum. In connection with this question we propose a new family of linear positive operators.
LA - eng
KW - linear positive operator; polynomial weighted space; linear positive operator; polynomial weighted space
UR - http://eudml.org/doc/37862
ER -

References

top
  1. Atakut, C., Ispir, N., The order of approximation by certain linear positive operators, Math. Balk., New Ser. 15 (2001), 25-33. (2001) Zbl1040.41007MR1882520
  2. Becker, M., 10.1512/iumj.1978.27.27011, Indiana Univ. Math. J. 27 (1978), 127-142. (1978) Zbl0358.41006MR0493079DOI10.1512/iumj.1978.27.27011
  3. Becker, M., Kucharski, D., Nessel, R. J., Global Approximation theorems for the Szasz-Mirakjan operators in exponential weight spaces. Linear Spaces and Approximation (Proc. Conf. Oberwolfach, 1977), ISNM, Int. Ser. Numer. Math. 40 (1978), 319-333. (1978) MR0499919
  4. Ciupa, A., On the approximation by Favard-Szasz type operators, Rev. Anal. Numér. Théor. Approx. 25 (1996), 57-61. (1996) Zbl0908.41010MR1607327
  5. Ciupa, A., Approximation by a generalized Szasz type operators, J. Comput. Anal. Appl. 5 (2003), 413-424. (2003) MR2000071
  6. Vore, R. A. De, Lorentz, G. G., Constructive Approximation, Springer Berlin (1993). (1993) MR1261635
  7. Feng, G., 10.1007/BF02835477, Anal. Theory Appl. 19 (2003), 47-54. (2003) Zbl1108.41301MR1996352DOI10.1007/BF02835477
  8. Feng, G., A characterization of pointwise approximation for linear combinations of Szász-type operators, Chinese Quart. J. Math. 19 (2004), 379-384. (2004) MR2131301
  9. Gupta, P., Gupta, V., Rate of convergence on Baskakov-Szasz type operators, Fasc. Math. 31 (2001), 37-44. (2001) MR1860546
  10. Gupta, V., 10.1016/j.jmaa.2005.05.017, J. Math. Anal. Appl. 313 (2006), 632-641. (2006) Zbl1092.41009MR2183324DOI10.1016/j.jmaa.2005.05.017
  11. Gupta, V., Maheshwari, P., On Baskakov-Szasz type operators, Kyungpook Math. J. 43 (2003), 315-325. (2003) Zbl1145.41307MR2003476
  12. Gupta, V., Pant, R. P., 10.1006/jmaa.1999.6289, J. Math. Anal. Appl. 233 (1999), 476-483. (1999) Zbl0931.41012MR1689649DOI10.1006/jmaa.1999.6289
  13. Gupta, V., Vasishtha, V., Gupta, M. K., 10.2298/PIM0272137G, Publ. Inst. Math., Nouv. Sér. 72 (2002), 137-143. (2002) Zbl1052.41005MR1997619DOI10.2298/PIM0272137G
  14. Guo, S., 10.1016/0021-9045(89)90114-7, J. Approximation Theory 56 (1989), 245-255. (1989) Zbl0677.41023MR0990339DOI10.1016/0021-9045(89)90114-7
  15. Guo, S., Li, C., Sun, Y., Yand, G., Yue, S., 10.1006/jath.1998.3200, J. Approximation Theory 94 (1998), 160-171. (1998) MR1637831DOI10.1006/jath.1998.3200
  16. Herzog, M., Approximation theorems for modified Szasz-Mirakjan operators in polynomial weight spaces, Matematiche 54 (1999), 77-90. (1999) Zbl0960.41015MR1776330
  17. Ispir, N., Weighted approximation by modified Favard-Szász operators, Int. Math. J. 3 (2003),1053-1060. (2003) MR2005685
  18. Ispir, N., Atakut, C., 10.1007/BF02829690, Proc. Indian Acad. Sci., Math. Sci. 112 (2002), 571-578. (2002) MR1941893DOI10.1007/BF02829690
  19. Lehnhoff, H. G., 10.1016/0021-9045(84)90045-5, J. Approximation Theory 42 (1984), 278-282. (1984) Zbl0573.41034MR0765443DOI10.1016/0021-9045(84)90045-5
  20. Lesniewicz, M., Rempulska, L., Approximation by some operators of the Szasz-Mirakjan type in exponential weight spaces, Glas. Mat., III. Ser. 32 (1997), 57-69. (1997) Zbl0880.41017MR1469620
  21. Li, S., 10.1006/jath.1996.3016, J. Approximation Theory 88 (1997), 139-153. (1997) Zbl0872.41008MR1429969DOI10.1006/jath.1996.3016
  22. Linsen, X., Xiaoping, Z., Pointwise characterization for combinations of Baskakov operators, Approximation Theory Appl. 18 (2002), 76-89. (2002) MR1928167
  23. Rempulska, L., Walczak, Z., On modified Baskakov operators, Proc. A. Razmadze Math. Inst. 133( (2003), 109-117. (2003) Zbl1042.41020MR2034442
  24. Rempulska, L., Walczak, Z., 10.1007/BF02835254, Anal. Theory Appl. 20 (2004), 1-15. (2004) Zbl1073.41021MR2574579DOI10.1007/BF02835254
  25. Rempulska, L., Walczak, Z., Modified Szasz-Mirakyan operators, Math. Balk., New Ser. 18 (2004), 53-63. (2004) Zbl1079.41022MR2076077
  26. Sahai, A., Prasard, G., 10.1016/0021-9045(85)90039-5, J. Approximation Theory 45 (1985), 122-128. (1985) MR0813006DOI10.1016/0021-9045(85)90039-5
  27. Totik, V., Uniform approximation by Szász-Mirakjan type operators, Acta Math. 41 (1983), 291-307. (1983) Zbl0513.41013MR0703742
  28. Walczak, Z., On certain linear positive operators in exponential weighted spaces, Math. J. Toyama Univ. 25 (2002), 109-118. (2002) Zbl1111.41017MR1963731
  29. Walczak, Z., On certain positive linear operators in weighted polynomial spaces, Acta Math. 101 (2003), 179-191. (2003) MR2018629
  30. Walczak, Z., Approximation properties of certain linear positive operators in exponential weighted spaces, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 42 (2003), 123-130. (2003) Zbl1054.41015MR2056027
  31. Walczak, Z., Approximation by some linear positive operators of functions of two variables, Saitama Math. J. 21 (2003), 23-31. (2003) Zbl1071.41023MR2068761
  32. Walczak, Z., On the rate of convergence for modified Baskakov operators, Liet. matem. rink 44 (2004), 124-130. (2004) Zbl1058.41007MR2116497
  33. Walczak, Z., Approximation by some linear positive operators in polynomial weighted spaces, Publ. Math. Debrecen 64 (2004), 353-367. (2004) Zbl1079.41023MR2058908
  34. Walczak, Z., Approximation properties of certain linear positive operators in polynomial weighted spaces of functions of one and two variables, Publ. Elektrotehn. Fak. Univ. Beograd 15 (2004), 52-65. (2004) Zbl1106.41020MR2104230
  35. Walczak, Z., On the convergence of the modified Szasz-Mirakyan operators, Yokohama Math. J. 51 (2004), 11-18. (2004) Zbl1063.41018MR2095839
  36. Walczak, Z., 10.32917/hmj/1150922488, Hiroshima Math. J. 35 (2005), 115-124. (2005) Zbl1079.41024MR2131378DOI10.32917/hmj/1150922488
  37. Wood, B., 10.1016/0021-9045(89)90132-9, J. Approximation Theory 56 (1989), 48-58. (1989) Zbl0677.41024MR0977873DOI10.1016/0021-9045(89)90132-9
  38. Xiehua, S., On the convergence of the modified Szasz-Mirakjan operator, Approximation Theory Appl. 10 (1994), 20-25. (1994) MR1287450

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.