Asymptotics of variance of the lattice point count
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 3, page 751-758
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJanáček, Jiří. "Asymptotics of variance of the lattice point count." Czechoslovak Mathematical Journal 58.3 (2008): 751-758. <http://eudml.org/doc/37866>.
@article{Janáček2008,
abstract = {The variance of the number of lattice points inside the dilated bounded set $rD$ with random position in $\mathbb \{R\}^d$ has asymptotics $\sim r^\{d-1\}$ if the rotational average of the squared modulus of the Fourier transform of the set is $O(\rho ^\{-d-1\})$. The asymptotics follow from Wiener’s Tauberian theorem.},
author = {Janáček, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {point lattice; Fourier transform; volume; variance; point lattice; Fourier transform; volume; variance},
language = {eng},
number = {3},
pages = {751-758},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotics of variance of the lattice point count},
url = {http://eudml.org/doc/37866},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Janáček, Jiří
TI - Asymptotics of variance of the lattice point count
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 751
EP - 758
AB - The variance of the number of lattice points inside the dilated bounded set $rD$ with random position in $\mathbb {R}^d$ has asymptotics $\sim r^{d-1}$ if the rotational average of the squared modulus of the Fourier transform of the set is $O(\rho ^{-d-1})$. The asymptotics follow from Wiener’s Tauberian theorem.
LA - eng
KW - point lattice; Fourier transform; volume; variance; point lattice; Fourier transform; volume; variance
UR - http://eudml.org/doc/37866
ER -
References
top- Bochner, S., Chandrasekharan, K., Fourier transforms, Princeton University Press (1949). (1949) Zbl0065.34101MR0031582
- Brandolini, L., Hofmann, S., Iosevich, A., 10.1007/s00039-003-0426-7, Geom. Func. Anal. 13 (2003), 671-680. (2003) MR2006553DOI10.1007/s00039-003-0426-7
- Janáček, J., Variance of periodic measure of bounded set with random position, Comment. Math. Univ. Carolinae 47 (2006), 473-482. (2006) MR2281006
- Kendall, D. G., 10.1093/qmath/os-19.1.1, Quarterly J. Math. 19 (1948), 1-26. (1948) Zbl0031.11201MR0024929DOI10.1093/qmath/os-19.1.1
- Kendall, D. G., Rankin, R. A., 10.1093/qmath/4.1.178, Quarterly J. Math., 2nd Ser. 4 (1953), 178-189. (1953) Zbl0052.14503MR0057484DOI10.1093/qmath/4.1.178
- Matérn, B., 10.1111/j.1365-2818.1989.tb01477.x, J. Microsc. 153 (1989), 269-283. (1989) DOI10.1111/j.1365-2818.1989.tb01477.x
- Matheron, G., Les variables regionalisés et leur estimation, Masson et CIE, Paris (1965). (1965)
- Rao, R. C., Linear statistical inference and its applications, 2nd ed. , John Wiley & Sons, New York (1973). (1973) Zbl0256.62002MR0346957
- Rataj, J., 10.1023/B:CMAJ.0000027260.34288.7f, Czech. Math. J. 54 (2004), 205-214. (2004) Zbl1049.52004MR2040232DOI10.1023/B:CMAJ.0000027260.34288.7f
- Watson, G. N., A treatise on the theory of Bessel functions, 2nd edition, Cambridge University Press (1922). (1922) MR0010746
- Rudin, W., Functional Analysis, McGraw-Hill Book Company (1973). (1973) Zbl0253.46001MR0365062
- Varchenko, A., 10.1007/BF01083133, Func. Anal. Appl. 17 (1983), 79-83. (1983) MR0705041DOI10.1007/BF01083133
- Wiener, N., The Fourier integral and certain of its applications, Dover Publications Inc., New York (1933). (1933) Zbl0006.05401MR0100201
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.