Asymptotics of variance of the lattice point count

Jiří Janáček

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 3, page 751-758
  • ISSN: 0011-4642

Abstract

top
The variance of the number of lattice points inside the dilated bounded set r D with random position in d has asymptotics r d - 1 if the rotational average of the squared modulus of the Fourier transform of the set is O ( ρ - d - 1 ) . The asymptotics follow from Wiener’s Tauberian theorem.

How to cite

top

Janáček, Jiří. "Asymptotics of variance of the lattice point count." Czechoslovak Mathematical Journal 58.3 (2008): 751-758. <http://eudml.org/doc/37866>.

@article{Janáček2008,
abstract = {The variance of the number of lattice points inside the dilated bounded set $rD$ with random position in $\mathbb \{R\}^d$ has asymptotics $\sim r^\{d-1\}$ if the rotational average of the squared modulus of the Fourier transform of the set is $O(\rho ^\{-d-1\})$. The asymptotics follow from Wiener’s Tauberian theorem.},
author = {Janáček, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {point lattice; Fourier transform; volume; variance; point lattice; Fourier transform; volume; variance},
language = {eng},
number = {3},
pages = {751-758},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotics of variance of the lattice point count},
url = {http://eudml.org/doc/37866},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Janáček, Jiří
TI - Asymptotics of variance of the lattice point count
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 751
EP - 758
AB - The variance of the number of lattice points inside the dilated bounded set $rD$ with random position in $\mathbb {R}^d$ has asymptotics $\sim r^{d-1}$ if the rotational average of the squared modulus of the Fourier transform of the set is $O(\rho ^{-d-1})$. The asymptotics follow from Wiener’s Tauberian theorem.
LA - eng
KW - point lattice; Fourier transform; volume; variance; point lattice; Fourier transform; volume; variance
UR - http://eudml.org/doc/37866
ER -

References

top
  1. Bochner, S., Chandrasekharan, K., Fourier transforms, Princeton University Press (1949). (1949) Zbl0065.34101MR0031582
  2. Brandolini, L., Hofmann, S., Iosevich, A., 10.1007/s00039-003-0426-7, Geom. Func. Anal. 13 (2003), 671-680. (2003) MR2006553DOI10.1007/s00039-003-0426-7
  3. Janáček, J., Variance of periodic measure of bounded set with random position, Comment. Math. Univ. Carolinae 47 (2006), 473-482. (2006) MR2281006
  4. Kendall, D. G., 10.1093/qmath/os-19.1.1, Quarterly J. Math. 19 (1948), 1-26. (1948) Zbl0031.11201MR0024929DOI10.1093/qmath/os-19.1.1
  5. Kendall, D. G., Rankin, R. A., 10.1093/qmath/4.1.178, Quarterly J. Math., 2nd Ser. 4 (1953), 178-189. (1953) Zbl0052.14503MR0057484DOI10.1093/qmath/4.1.178
  6. Matérn, B., 10.1111/j.1365-2818.1989.tb01477.x, J. Microsc. 153 (1989), 269-283. (1989) DOI10.1111/j.1365-2818.1989.tb01477.x
  7. Matheron, G., Les variables regionalisés et leur estimation, Masson et CIE, Paris (1965). (1965) 
  8. Rao, R. C., Linear statistical inference and its applications, 2nd ed. , John Wiley & Sons, New York (1973). (1973) Zbl0256.62002MR0346957
  9. Rataj, J., 10.1023/B:CMAJ.0000027260.34288.7f, Czech. Math. J. 54 (2004), 205-214. (2004) Zbl1049.52004MR2040232DOI10.1023/B:CMAJ.0000027260.34288.7f
  10. Watson, G. N., A treatise on the theory of Bessel functions, 2nd edition, Cambridge University Press (1922). (1922) MR0010746
  11. Rudin, W., Functional Analysis, McGraw-Hill Book Company (1973). (1973) Zbl0253.46001MR0365062
  12. Varchenko, A., 10.1007/BF01083133, Func. Anal. Appl. 17 (1983), 79-83. (1983) MR0705041DOI10.1007/BF01083133
  13. Wiener, N., The Fourier integral and certain of its applications, Dover Publications Inc., New York (1933). (1933) Zbl0006.05401MR0100201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.