The diameter of paired-domination vertex critical graphs
Michael A. Henning; Christina M. Mynhardt
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 887-897
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHenning, Michael A., and Mynhardt, Christina M.. "The diameter of paired-domination vertex critical graphs." Czechoslovak Mathematical Journal 58.4 (2008): 887-897. <http://eudml.org/doc/37874>.
@article{Henning2008,
abstract = {In this paper we continue the study of paired-domination in graphs introduced by Haynes and Slater (Networks 32 (1998), 199–206). A paired-dominating set of a graph $G$ with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of $G$, denoted by $\gamma _\{\{\rm pr\}\}(G)$, is the minimum cardinality of a paired-dominating set of $G$. The graph $G$ is paired-domination vertex critical if for every vertex $v$ of $G$ that is not adjacent to a vertex of degree one, $\gamma _\{\{\rm pr\}\}(G - v) < \gamma _\{\{\rm pr\}\}(G)$. We characterize the connected graphs with minimum degree one that are paired-domination vertex critical and we obtain sharp bounds on their maximum diameter. We provide an example which shows that the maximum diameter of a paired-domination vertex critical graph is at least $\frac\{3\}\{2\}(\gamma _\{\{\rm pr\}\}(G) - 2)$. For $\gamma _\{\{\rm pr\}\}(G) \le 8$, we show that this lower bound is precisely the maximum diameter of a paired-domination vertex critical graph.},
author = {Henning, Michael A., Mynhardt, Christina M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {paired-domination; vertex critical; bounds; diameter; paired-domination number; paired-dominating set; vertex critical; bounds; diameter},
language = {eng},
number = {4},
pages = {887-897},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The diameter of paired-domination vertex critical graphs},
url = {http://eudml.org/doc/37874},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Henning, Michael A.
AU - Mynhardt, Christina M.
TI - The diameter of paired-domination vertex critical graphs
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 887
EP - 897
AB - In this paper we continue the study of paired-domination in graphs introduced by Haynes and Slater (Networks 32 (1998), 199–206). A paired-dominating set of a graph $G$ with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of $G$, denoted by $\gamma _{{\rm pr}}(G)$, is the minimum cardinality of a paired-dominating set of $G$. The graph $G$ is paired-domination vertex critical if for every vertex $v$ of $G$ that is not adjacent to a vertex of degree one, $\gamma _{{\rm pr}}(G - v) < \gamma _{{\rm pr}}(G)$. We characterize the connected graphs with minimum degree one that are paired-domination vertex critical and we obtain sharp bounds on their maximum diameter. We provide an example which shows that the maximum diameter of a paired-domination vertex critical graph is at least $\frac{3}{2}(\gamma _{{\rm pr}}(G) - 2)$. For $\gamma _{{\rm pr}}(G) \le 8$, we show that this lower bound is precisely the maximum diameter of a paired-domination vertex critical graph.
LA - eng
KW - paired-domination; vertex critical; bounds; diameter; paired-domination number; paired-dominating set; vertex critical; bounds; diameter
UR - http://eudml.org/doc/37874
ER -
References
top- Brigham, R. C., Chinn, P. Z., Dutton, R. D., 10.1002/net.3230180304, Networks 18 (1988), 173-179. (1988) Zbl0658.05042MR0953920DOI10.1002/net.3230180304
- Chellali, M., Haynes, T. W., Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004), 3-12. (2004) Zbl1082.05023MR2098744
- Chellali, M., Haynes, T. W., Total and paired-domination numbers of a tree, AKCE Int. J. Graphs Comb. 1 (2004), 69-75. (2004) Zbl1066.05101MR2120712
- Chellali, M., Haynes, T. W., On paired and double domination in graphs, Util. Math. 67 (2005), 161-171. (2005) Zbl1069.05058MR2137931
- Edwards, M., Criticality concepts for paired domination in graphs, Master Thesis University of Victoria (2006). (2006)
- Favaron, O., Henning, M. A., 10.1007/s00373-004-0577-9, Graphs Comb. 20 (2004), 447-456. (2004) Zbl1054.05074MR2108391DOI10.1007/s00373-004-0577-9
- Favaron, O., Sumner, D., Wojcicka, E., 10.1002/jgt.3190180708, J. Graph Theory 18 (1994), 723-734. (1994) Zbl0807.05042MR1297193DOI10.1002/jgt.3190180708
- Fulman, J., Hanson, D., MacGillivray, G., 10.1002/net.3230250203, Networks 25 (1995), 41-43. (1995) Zbl0820.05038MR1321108DOI10.1002/net.3230250203
- Fitzpatrick, S., Hartnell, B., 10.7151/dmgt.1063, Discuss. Math. Graph Theory 18 (1998), 63-72. (1998) Zbl0916.05061MR1646231DOI10.7151/dmgt.1063
- Goddard, W., Haynes, T. W., Henning, M. A., Merwe, L. C. van der, 10.1016/j.disc.2004.05.010, Discrete Math. 286 (2004), 255-261. (2004) MR2085130DOI10.1016/j.disc.2004.05.010
- Haynes, T. W., Hedetniemi, S. T., Slater, P. J., Fundamentals of Domination in Graphs, Marcel Dekker New York (1998). (1998) Zbl0890.05002MR1605684
- Haynes, T. W., Hedetniemi, S. T., Slater, P. J., Domination in Graphs. Advanced Topics, Marcel Dekker New York (1998). (1998) Zbl0883.00011MR1605685
- Haynes, T. W., Henning, M. A., Trees with large paired-domination number, Util. Math. 71 (2006), 3-12. (2006) Zbl1112.05078MR2278818
- Haynes, T. W., Slater, P. J., 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F, Networks 32 (1998), 199-206. (1998) Zbl0997.05074MR1645415DOI10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F
- Haynes, T. W., Slater, P. J., Paired-domination and the paired-domatic number, Congr. Numerantium 109 (1995), 65-72. (1995) Zbl0904.05052MR1369295
- Henning, M. A., Trees with equal total domination and paired-domination numbers, Util. Math. 69 (2006), 207-218. (2006) Zbl1100.05070MR2212810
- Henning, M. A., 10.1007/s10878-006-9014-8, J. Comb. Optim. 13 (2007), 61-78. (2007) Zbl1108.05069MR2273264DOI10.1007/s10878-006-9014-8
- Henning, M. A., Plummer, M. D., 10.1007/s10878-005-4107-3, J. Comb. Optim. 10 (2005), 283-294. (2005) Zbl1122.05071MR2186747DOI10.1007/s10878-005-4107-3
- Proffitt, K. E., Haynes, T. W., Slater, P. J., Paired-domination in grid graphs, Congr. Numerantium 150 (2001), 161-172. (2001) Zbl0988.05067MR1887420
- Qiao, H., Kang, L., Cardei, M., Du, Ding-Zhu, 10.1023/A:1021338214295, J. Glob. Optim. 25 (2003), 43-54. (2003) Zbl1013.05055MR1969426DOI10.1023/A:1021338214295
- Sumner, D. P., 10.1016/0012-365X(90)90347-K, Discrete Math. 86 (1990), 33-46. (1990) Zbl0725.05049MR1088558DOI10.1016/0012-365X(90)90347-K
- Sumner, D. P., Blitch, P., 10.1016/0095-8956(83)90007-2, J. Comb. Theory Ser. B 34 (1983), 65-76. (1983) Zbl0512.05055MR0701172DOI10.1016/0095-8956(83)90007-2
- Sumner, D. P., Wojcicka, E., Graphs critical with respect to the domination number, Domination in Graphs: Advanced Topics (Chapter 16) T. W. Haynes, S. T. Hedetniemi, P. J. Slater Marcel Dekker New York (1998), 439-469. (1998) Zbl0891.05043MR1605701
- Wojcicka, E., 10.1002/jgt.3190140209, J. Graph Theory 14 (1990), 205-215. (1990) Zbl0702.05058MR1053604DOI10.1002/jgt.3190140209
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.