Exchange rings in which all regular elements are one-sided unit-regular

Huanyin Chen

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 4, page 899-910
  • ISSN: 0011-4642

Abstract

top
Let R be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in R is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability.

How to cite

top

Chen, Huanyin. "Exchange rings in which all regular elements are one-sided unit-regular." Czechoslovak Mathematical Journal 58.4 (2008): 899-910. <http://eudml.org/doc/37875>.

@article{Chen2008,
abstract = {Let $R$ be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in $R$ is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability.},
author = {Chen, Huanyin},
journal = {Czechoslovak Mathematical Journal},
keywords = {exchange ring; one-sided unit-regularity; idempotent; exchange rings; regular elements; one-sided unit-regularity; idempotents; units; related comparability},
language = {eng},
number = {4},
pages = {899-910},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exchange rings in which all regular elements are one-sided unit-regular},
url = {http://eudml.org/doc/37875},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Chen, Huanyin
TI - Exchange rings in which all regular elements are one-sided unit-regular
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 899
EP - 910
AB - Let $R$ be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in $R$ is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability.
LA - eng
KW - exchange ring; one-sided unit-regularity; idempotent; exchange rings; regular elements; one-sided unit-regularity; idempotents; units; related comparability
UR - http://eudml.org/doc/37875
ER -

References

top
  1. Ara, P., 10.1090/S0002-9939-96-03473-9, Proc. Amer. Math. Soc. 124 (1996), 3293-3298. (1996) Zbl0865.16007MR1343679DOI10.1090/S0002-9939-96-03473-9
  2. Ara, P., 10.1090/S0002-9939-04-07369-1, Proc. Amer. Math. Soc. 132 (2004), 2543-2547. (2004) Zbl1055.16012MR2054778DOI10.1090/S0002-9939-04-07369-1
  3. Ara, P., Goodearl, K. R., O'Meara, K. C., Pardo, E., 10.1007/BF02780325, Israel J. Math. 105 (1998), 105-137. (1998) Zbl0908.16002MR1639739DOI10.1007/BF02780325
  4. Ara, P., Goodearl, K. R., Pardo, E., 10.1023/A:1016358107918, -Theory 26 (2002), 69-100. (2002) Zbl1012.16013MR1918211DOI10.1023/A:1016358107918
  5. Camillo, V. P., Khurana, D. A., 10.1081/AGB-100002185, Comm. Algebra 29 (2001), 2293-2295. (2001) Zbl0992.16011MR1837978DOI10.1081/AGB-100002185
  6. Chen, H., 10.1080/00927879708826002, Comm. Algebra 25 (1997), 2517-2529. (1997) Zbl0881.16004MR1459573DOI10.1080/00927879708826002
  7. Chen, H., 10.1080/00927879908826691, Comm. Algebra 27 (1999), 4209-4216. (1999) Zbl0952.16010MR1705862DOI10.1080/00927879908826691
  8. Chen, H., 10.1080/00927870500388026, Comm. Algebra 34 (2006), 737-741. (2006) Zbl1100.16009MR2211952DOI10.1080/00927870500388026
  9. Chen, H., Li, F., Exchange rings satisfying related comparability, Collect. Math. 53 (2002), 157-164. (2002) MR1913515
  10. Khurana, D., Lam, T. Y., 10.1016/j.jalgebra.2004.04.019, J. Algebra 280 (2004), 683-698. (2004) Zbl1067.16050MR2090058DOI10.1016/j.jalgebra.2004.04.019
  11. Lam, T. Y., 10.1142/S0219498804000897, J. Algebra Appl. 3 (2004), 301-343. (2004) Zbl1072.16013MR2096452DOI10.1142/S0219498804000897
  12. Lu, D., Li, Q., Tong, W., 10.1081/AGB-120037403, Comm. Algebra 32 (2004), 2617-2634. (2004) Zbl1074.16007MR2099921DOI10.1081/AGB-120037403
  13. Nicholson, W. K., Zhou, Y., Clean rings: A survey, Advances in Ring Theory, Proceedings of the 4th China-Japan-Korea International Conference (2004), 181-198. (2004) MR2181857
  14. Pardo, E., 10.1080/00927879608825721, Comm. Algebra 24 (1996), 2915-2929. (1996) Zbl0859.16001MR1396864DOI10.1080/00927879608825721
  15. Wei, J., 10.1081/AGB-200063337, Comm. Algebra 33 (2005), 1937-1946. (2005) Zbl1093.16003MR2150852DOI10.1081/AGB-200063337
  16. Tuganbaev, A. A., Rings Close to Regular, Kluwer Academic Publishers, Dordrecht, Boston, London (2002). (2002) Zbl1120.16012MR1958361

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.