On the vanishing viscosity method for first order differential-functional IBVP

Krzysztof A. Topolski

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 4, page 927-947
  • ISSN: 0011-4642

Abstract

top
We consider the initial-boundary value problem for first order differential-functional equations. We present the `vanishing viscosity' method in order to obtain viscosity solutions. Our formulation includes problems with a retarded and deviated argument and differential-integral equations.

How to cite

top

Topolski, Krzysztof A.. "On the vanishing viscosity method for first order differential-functional IBVP." Czechoslovak Mathematical Journal 58.4 (2008): 927-947. <http://eudml.org/doc/37878>.

@article{Topolski2008,
abstract = {We consider the initial-boundary value problem for first order differential-functional equations. We present the `vanishing viscosity' method in order to obtain viscosity solutions. Our formulation includes problems with a retarded and deviated argument and differential-integral equations.},
author = {Topolski, Krzysztof A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {viscosity solutions; first order equation; parabolic equation; differential functional equations; viscosity solutions; first order equation; parabolic equation; differential functional equations},
language = {eng},
number = {4},
pages = {927-947},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the vanishing viscosity method for first order differential-functional IBVP},
url = {http://eudml.org/doc/37878},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Topolski, Krzysztof A.
TI - On the vanishing viscosity method for first order differential-functional IBVP
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 927
EP - 947
AB - We consider the initial-boundary value problem for first order differential-functional equations. We present the `vanishing viscosity' method in order to obtain viscosity solutions. Our formulation includes problems with a retarded and deviated argument and differential-integral equations.
LA - eng
KW - viscosity solutions; first order equation; parabolic equation; differential functional equations; viscosity solutions; first order equation; parabolic equation; differential functional equations
UR - http://eudml.org/doc/37878
ER -

References

top
  1. Alvarez, O., Tourin, A., 10.1016/S0294-1449(16)30106-8, Ann. Inst. H. Poincaré anal. Non Linaire 13 (1996), 293-317. (1996) Zbl0870.45002MR1395674DOI10.1016/S0294-1449(16)30106-8
  2. Bardi, M., Crandall, M. G., Evans, L. C., Soner, H. M., Souganidis, P. E., Viscosity Solutions and Applications, Springer-Verlag Berlin-Heidelberg-New York (1997). (1997) 
  3. Brandi, P., Ceppitelli, R., On the existance of solutions of nonlinear functional partial differential equations of the first order, Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 166-186. (1980) MR0632726
  4. Brandi, P., Ceppitelli, R., 10.4064/ap-47-2-121-136, Ann. Polon. Math. 47 (1986), 121-136. (1986) Zbl0657.35124MR0884930DOI10.4064/ap-47-2-121-136
  5. Brzychczy, S., Chaplygin's method for a system of nonlinear parabolic differential-functional equations, Differen. Urav. 22 (1986), 705-708 Russian. (1986) MR0843232
  6. Brzychczy, S., 10.4064/ap-47-3-309-317, Ann. Polon. Math. 47 (1987), 309-317. (1987) MR0927579DOI10.4064/ap-47-3-309-317
  7. Crandall, M. G., Ishii, H., Lions, P. L., 10.1090/S0273-0979-1992-00266-5, Bull. Amer. Math. Soc. 27 (1992), 1-67. (1992) Zbl0755.35015MR1118699DOI10.1090/S0273-0979-1992-00266-5
  8. Crandall, M. G., Lions, P. L., 10.1090/S0002-9947-1983-0690039-8, Trans. Amer. Math. Soc. 277 (1983), 1-42. (1983) Zbl0599.35024MR0690039DOI10.1090/S0002-9947-1983-0690039-8
  9. Hale, J. K., Lunel, S. M. V., Introduction to Functional Differential Equations, Springer-Verlag New York (1993). (1993) Zbl0787.34002MR1243878
  10. Ishii, H., Koike, S., Viscosity solutions of functional differential equations, Adv. Math. Sci. Appl. Gakkotosho, Tokyo 3 (1993/94), 191-218. (1993) MR1287929
  11. Jakobsen, E. R., Karlsen, K. H., 10.1016/j.jde.2004.06.021, J. Differential Equations 212 (2005), 278-318. (2005) MR2129093DOI10.1016/j.jde.2004.06.021
  12. Kamont, Z., Initial value problems for hyperbolic differential-functional systems, Boll. Un. Mat. Ital. 171 (1994), 965-984. (1994) Zbl0832.35144MR1315829
  13. Kruzkov, S. N., Generalized solutions of first order nonlinear equations in several independent variables I, Mat. Sb. 70 (1966), 394-415 II, Mat.Sb. (N.S) 72 (1967), 93-116 Russian. (1967) MR0199543
  14. Ladyzhenskaya, O. A., Solonikov, V. A., Uralceva, N. N., Linear and Quasilinear Equations of Parabolic Type, Nauka, Moskva (1967), Russian Translation of Mathematical Monographs, Vol. 23, Am. Math. Soc., Providence, R.I. (1968). (1968) MR0241822
  15. Lions, P. L., Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London (1982). (1982) Zbl0497.35001MR0667669
  16. Sayah, A., 10.1080/03605309108820789, Comm. Partial Differential Equations 16 (1991), 1057-1093. (1991) MR1116853DOI10.1080/03605309108820789
  17. Topolski, K., 10.4064/ap-59-1-65-75, Ann. Polon. Math. 59 (1994), 65-75. (1994) Zbl0804.35138MR1270302DOI10.4064/ap-59-1-65-75
  18. Topolski, K., 10.4064/ap-68-1-17-25, Ann. Polon. Math. 68 (1998), 17-25. (1998) MR1606607DOI10.4064/ap-68-1-17-25
  19. Topolski, K. A., 10.1155/S1085337598000608, Abstr. Appl. Anal. 3 (1998), 363-375. (1998) MR1749416DOI10.1155/S1085337598000608
  20. Topolski, K. A., On the existence of viscosity solutions for the differential-functional Cauchy problem, Comment. Math. 39 (1999), 207-223. (1999) Zbl0972.35173MR1739030
  21. Topolski, Krzysztof A., On the existence of viscosity solution for the parabolic differential-functional Cauchy problem, Preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.