Bilinear multipliers on Lorentz spaces

Francisco Villarroya

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 4, page 1045-1057
  • ISSN: 0011-4642

Abstract

top
We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform.

How to cite

top

Villarroya, Francisco. "Bilinear multipliers on Lorentz spaces." Czechoslovak Mathematical Journal 58.4 (2008): 1045-1057. <http://eudml.org/doc/37884>.

@article{Villarroya2008,
abstract = {We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform.},
author = {Villarroya, Francisco},
journal = {Czechoslovak Mathematical Journal},
keywords = {bilinear Hilbert transform; bilinear multipliers; Lorentz spaces; bilinear Hilbert transform; bilinear multipliers; Lorentz spaces},
language = {eng},
number = {4},
pages = {1045-1057},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bilinear multipliers on Lorentz spaces},
url = {http://eudml.org/doc/37884},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Villarroya, Francisco
TI - Bilinear multipliers on Lorentz spaces
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1045
EP - 1057
AB - We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform.
LA - eng
KW - bilinear Hilbert transform; bilinear multipliers; Lorentz spaces; bilinear Hilbert transform; bilinear multipliers; Lorentz spaces
UR - http://eudml.org/doc/37884
ER -

References

top
  1. Bennet, C., Sharpley, R., Interpolation of operators, Pure and applied mathematics vol. 129, Academic Press, Inc., New York (1988). (1988) MR0928802
  2. Calderón, A. P., 10.1073/pnas.74.4.1324, Proc. Natl. Acad. Sci. USA 74 1324-1327 (1977). (1977) MR0466568DOI10.1073/pnas.74.4.1324
  3. Fefferman, C., 10.2307/1970917, Ann. Math. 98 551-571 (1973). (1973) Zbl0268.42009MR0340926DOI10.2307/1970917
  4. Gilbert, J., Nahmod, A., 10.4310/MRL.2000.v7.n6.a9, Math. Res. Lett. 7 (2000), 767-778. (2000) MR1809300DOI10.4310/MRL.2000.v7.n6.a9
  5. Gilbert, J., Nahmod, A., 10.1007/BF02511220, J. Fourier Anal. Appl. 7 (2001), 437-469. (2001) MR1845098DOI10.1007/BF02511220
  6. Grafakos, L., Li, X., 10.4007/annals.2004.159.889, Annals of Mathematics 159 (2004), 889-933. (2004) MR2113017DOI10.4007/annals.2004.159.889
  7. Lacey, M., On the bilinear Hilbert transform, Doc. Math., vol. II 647-656 (1998). (1998) Zbl0963.42007MR1648113
  8. Lacey, M., Thiele, C., L p bounds on the bilinear Hilbert transform for 2 < p < , Ann. Math. 146 (1997), 693-724. (1997) Zbl0946.44001MR1491450
  9. Lacey, M., Thiele, C., 10.2307/120971, Ann. Math. 149 (1999), 475-496. (1999) Zbl0934.42012MR1689336DOI10.2307/120971
  10. Lacey, M., 10.2307/121111, Ann. Math. 151 (2000), 35-57. (2000) MR1745019DOI10.2307/121111
  11. Larsen, R., An introduction to the theory of multipliers, vol. 175, Springer-Verlag (1971). (1971) MR0435738
  12. Muscalu, C., Tao, T., Thiele, C., 10.1090/S0894-0347-01-00379-4, J. Amer. Math. Soc. 15 (2002), 469-496. (2002) MR1887641DOI10.1090/S0894-0347-01-00379-4
  13. Muscalu, C., Tao, T., Thiele, C., 10.1007/BF02786579, J. Anal. Math. 88 255-309 (2002). (2002) Zbl1041.42013MR1979774DOI10.1007/BF02786579
  14. Thiele, C., On the bilinear Hilbert transform, Universität Kiel, Habilitation (1998). (1998) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.