Convergence theorems for the Birkhoff integral

Marek Balcerzak; Monika Potyrała

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 4, page 1207-1219
  • ISSN: 0011-4642

Abstract

top
We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence ( f n ) of functions from a measure space to a Banach space. In one result the equi-integrability of f n ’s is involved and we assume f n f almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of ( f n ) to f is assumed.

How to cite

top

Balcerzak, Marek, and Potyrała, Monika. "Convergence theorems for the Birkhoff integral." Czechoslovak Mathematical Journal 58.4 (2008): 1207-1219. <http://eudml.org/doc/37897>.

@article{Balcerzak2008,
abstract = {We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence $(f_n)$ of functions from a measure space to a Banach space. In one result the equi-integrability of $f_n$’s is involved and we assume $f_n\rightarrow f$ almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of $(f_n)$ to $f$ is assumed.},
author = {Balcerzak, Marek, Potyrała, Monika},
journal = {Czechoslovak Mathematical Journal},
keywords = {Birkhoff integral; convergence theorems; vector valued functions; Birkhoff integral; convergence theorems; vector valued functions},
language = {eng},
number = {4},
pages = {1207-1219},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence theorems for the Birkhoff integral},
url = {http://eudml.org/doc/37897},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Balcerzak, Marek
AU - Potyrała, Monika
TI - Convergence theorems for the Birkhoff integral
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1207
EP - 1219
AB - We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence $(f_n)$ of functions from a measure space to a Banach space. In one result the equi-integrability of $f_n$’s is involved and we assume $f_n\rightarrow f$ almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of $(f_n)$ to $f$ is assumed.
LA - eng
KW - Birkhoff integral; convergence theorems; vector valued functions; Birkhoff integral; convergence theorems; vector valued functions
UR - http://eudml.org/doc/37897
ER -

References

top
  1. Birkhoff, G., Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38 (1935), 357-378. (1935) Zbl0013.00803MR1501815
  2. Cascales, B., Rodríguez, J., 10.1007/s00208-004-0581-7, Math. Ann. 331 (2005), 259-279. (2005) MR2115456DOI10.1007/s00208-004-0581-7
  3. J. Diestel, J. J. Uhl., Jr., Vector measures, Math. Surveys, 15, Amer. Math. Soc., Providence, Rhode Island (1977). (1977) Zbl0369.46039MR0453964
  4. Fremlin, D. H., The McShane and Birkhoff integrals of vector-valued functions, University of Essex, Mathematics Department Reaearch, 1999, Report 92-10, available at http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm. 
  5. Hille, E., Phillips, R., Functional Analysis and Semi-Groups, Colloquium Publications, 31, Amer. Math. Soc., Providence, Rhode Island (1957). (1957) MR0089373
  6. Kadets, V. M., Shumyatskiy, B., Shvidkoy, R., Tseytlin, L., Zheltukhin, K., Some remarks on vector-valued integration, Mat. Fiz. Anal. Geom. 9 (2002), 48-65. (2002) Zbl1084.28008MR1911073
  7. Kadets, V. M., Tseytlin, L. M., On `integration' of non-integrable vector-valued functions, Mat. Fiz. Anal. Geom. 7 (2000), 49-65. (2000) Zbl0974.28007MR1760946
  8. Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I, Sequence Spaces, Springer-Verlag, Berlin, Heidelberg, New York (1977). (1977) Zbl0362.46013MR0500056
  9. Marraffa, V., 10.1016/j.jmaa.2003.12.029, J. Math. Anal. Appl. 293 (2004), 71-78. (2004) Zbl1087.47023MR2052532DOI10.1016/j.jmaa.2003.12.029
  10. Potyrała, M., Some remarks about Birkhoff and Riemann-Lebesgue integrability of vector valued functions, Tatra Mt. Math. Publ. 35 (2007), 97-106. (2007) MR2372438
  11. Potyrała, M., The Birkhoff and variational McShane integrals of vector valued functions, Folia Mathematica, Acta Universitatis Lodziensis 13 (2006), 31-40. (2006) MR2675441
  12. Rodríguez, J., 10.1090/S0002-9939-04-07665-8, Proc. Amer. Math. Soc. 133 (2005), 1157-1163. (2005) MR2117218DOI10.1090/S0002-9939-04-07665-8
  13. Rodríguez, J., 10.1007/s10587-006-0058-9, Czech. Math. J. 56 (2006), 805-825. (2006) MR2261655DOI10.1007/s10587-006-0058-9
  14. Schwabik, Š., Guoju, Ye, Topics in Banach Space Integration, Series in Real Analysis, 10, World Scientific, Singapore (2005). (2005) MR2167754

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.