Convergence theorems for the Birkhoff integral
Marek Balcerzak; Monika Potyrała
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 1207-1219
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBalcerzak, Marek, and Potyrała, Monika. "Convergence theorems for the Birkhoff integral." Czechoslovak Mathematical Journal 58.4 (2008): 1207-1219. <http://eudml.org/doc/37897>.
@article{Balcerzak2008,
abstract = {We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence $(f_n)$ of functions from a measure space to a Banach space. In one result the equi-integrability of $f_n$’s is involved and we assume $f_n\rightarrow f$ almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of $(f_n)$ to $f$ is assumed.},
author = {Balcerzak, Marek, Potyrała, Monika},
journal = {Czechoslovak Mathematical Journal},
keywords = {Birkhoff integral; convergence theorems; vector valued functions; Birkhoff integral; convergence theorems; vector valued functions},
language = {eng},
number = {4},
pages = {1207-1219},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence theorems for the Birkhoff integral},
url = {http://eudml.org/doc/37897},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Balcerzak, Marek
AU - Potyrała, Monika
TI - Convergence theorems for the Birkhoff integral
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1207
EP - 1219
AB - We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence $(f_n)$ of functions from a measure space to a Banach space. In one result the equi-integrability of $f_n$’s is involved and we assume $f_n\rightarrow f$ almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of $(f_n)$ to $f$ is assumed.
LA - eng
KW - Birkhoff integral; convergence theorems; vector valued functions; Birkhoff integral; convergence theorems; vector valued functions
UR - http://eudml.org/doc/37897
ER -
References
top- Birkhoff, G., Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38 (1935), 357-378. (1935) Zbl0013.00803MR1501815
- Cascales, B., Rodríguez, J., 10.1007/s00208-004-0581-7, Math. Ann. 331 (2005), 259-279. (2005) MR2115456DOI10.1007/s00208-004-0581-7
- J. Diestel, J. J. Uhl., Jr., Vector measures, Math. Surveys, 15, Amer. Math. Soc., Providence, Rhode Island (1977). (1977) Zbl0369.46039MR0453964
- Fremlin, D. H., The McShane and Birkhoff integrals of vector-valued functions, University of Essex, Mathematics Department Reaearch, 1999, Report 92-10, available at http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm.
- Hille, E., Phillips, R., Functional Analysis and Semi-Groups, Colloquium Publications, 31, Amer. Math. Soc., Providence, Rhode Island (1957). (1957) MR0089373
- Kadets, V. M., Shumyatskiy, B., Shvidkoy, R., Tseytlin, L., Zheltukhin, K., Some remarks on vector-valued integration, Mat. Fiz. Anal. Geom. 9 (2002), 48-65. (2002) Zbl1084.28008MR1911073
- Kadets, V. M., Tseytlin, L. M., On `integration' of non-integrable vector-valued functions, Mat. Fiz. Anal. Geom. 7 (2000), 49-65. (2000) Zbl0974.28007MR1760946
- Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I, Sequence Spaces, Springer-Verlag, Berlin, Heidelberg, New York (1977). (1977) Zbl0362.46013MR0500056
- Marraffa, V., 10.1016/j.jmaa.2003.12.029, J. Math. Anal. Appl. 293 (2004), 71-78. (2004) Zbl1087.47023MR2052532DOI10.1016/j.jmaa.2003.12.029
- Potyrała, M., Some remarks about Birkhoff and Riemann-Lebesgue integrability of vector valued functions, Tatra Mt. Math. Publ. 35 (2007), 97-106. (2007) MR2372438
- Potyrała, M., The Birkhoff and variational McShane integrals of vector valued functions, Folia Mathematica, Acta Universitatis Lodziensis 13 (2006), 31-40. (2006) MR2675441
- Rodríguez, J., 10.1090/S0002-9939-04-07665-8, Proc. Amer. Math. Soc. 133 (2005), 1157-1163. (2005) MR2117218DOI10.1090/S0002-9939-04-07665-8
- Rodríguez, J., 10.1007/s10587-006-0058-9, Czech. Math. J. 56 (2006), 805-825. (2006) MR2261655DOI10.1007/s10587-006-0058-9
- Schwabik, Š., Guoju, Ye, Topics in Banach Space Integration, Series in Real Analysis, 10, World Scientific, Singapore (2005). (2005) MR2167754
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.