A new characterization of RBMO ( μ ) by John-Strömberg sharp maximal functions

Guoen Hu; Dachun Yang; Dongyong Yang

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 1, page 159-171
  • ISSN: 0011-4642

Abstract

top
Let μ be a nonnegative Radon measure on d which only satisfies μ ( B ( x , r ) ) C 0 r n for all x d , r > 0 , with some fixed constants C 0 > 0 and n ( 0 , d ] . In this paper, a new characterization for the space RBMO ( μ ) of Tolsa in terms of the John-Strömberg sharp maximal function is established.

How to cite

top

Hu, Guoen, Yang, Dachun, and Yang, Dongyong. "A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions." Czechoslovak Mathematical Journal 59.1 (2009): 159-171. <http://eudml.org/doc/37914>.

@article{Hu2009,
abstract = {Let $\mu $ be a nonnegative Radon measure on $\{\{\mathbb \{R\}\}^d\}$ which only satisfies $\mu (B(x, r))\le C_0r^n$ for all $x\in \{\{\mathbb \{R\}\}^d\}$, $r>0$, with some fixed constants $C_0>0$ and $n\in (0,d].$ In this paper, a new characterization for the space $\mathop \{\rm RBMO\}(\mu )$ of Tolsa in terms of the John-Strömberg sharp maximal function is established.},
author = {Hu, Guoen, Yang, Dachun, Yang, Dongyong},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-doubling measure; $\mathop \{\rm RBMO\}(\mu )$; sharp maximal function; non-doubling measure; ; sharp maximal function},
language = {eng},
number = {1},
pages = {159-171},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new characterization of $\{\rm RBMO\}(\mu )$ by John-Strömberg sharp maximal functions},
url = {http://eudml.org/doc/37914},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Hu, Guoen
AU - Yang, Dachun
AU - Yang, Dongyong
TI - A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 159
EP - 171
AB - Let $\mu $ be a nonnegative Radon measure on ${{\mathbb {R}}^d}$ which only satisfies $\mu (B(x, r))\le C_0r^n$ for all $x\in {{\mathbb {R}}^d}$, $r>0$, with some fixed constants $C_0>0$ and $n\in (0,d].$ In this paper, a new characterization for the space $\mathop {\rm RBMO}(\mu )$ of Tolsa in terms of the John-Strömberg sharp maximal function is established.
LA - eng
KW - non-doubling measure; $\mathop {\rm RBMO}(\mu )$; sharp maximal function; non-doubling measure; ; sharp maximal function
UR - http://eudml.org/doc/37914
ER -

References

top
  1. Hu, G., Wang, X., Yang, D., A new characterization for regular BMO with non-doubling measures, Proc. Edinburgh Math. Soc. 51 (2008), 155-170. (2008) Zbl1138.42012MR2391636
  2. Hu, G., Yang, D., 10.4064/sm187-2-1, Studia Math. 187 (2008), 101-123. (2008) MR2413311DOI10.4064/sm187-2-1
  3. John, F., Quasi-isometric mappings, 1965 Seminari 1962/63 Anal. Alg. Geom. e Topol., vol. 2, Ist. Naz. Alta Mat., 462-473, Ediz. Cremonese, Rome. Zbl0263.46006MR0190905
  4. Lerner, A. K., 10.14321/realanalexch.28.2.0649, Real Anal. Exch. 28 (2002/03), 649-660. Zbl1044.42018MR2010347DOI10.14321/realanalexch.28.2.0649
  5. Mateu, J., Mattila, P., Nicolau, A., Orobitg, J., 10.1215/S0012-7094-00-10238-4, Duke Math. J. 102 (2000), 533-565. (2000) Zbl0964.42009MR1756109DOI10.1215/S0012-7094-00-10238-4
  6. Meng, Y., 10.1016/j.jmaa.2007.01.075, J. Math. Anal. Appl. 335 (2007), 314-331. (2007) Zbl1121.42012MR2340323DOI10.1016/j.jmaa.2007.01.075
  7. Nazarov, F., Treil, S., Volberg, A., 10.1007/BF02392690, Acta Math. 190 (2003), 151-239. (2003) Zbl1065.42014MR1998349DOI10.1007/BF02392690
  8. Strömberg, J. O., 10.1512/iumj.1979.28.28037, Indiana Univ. Math. J. 28 (1979), 511-544. (1979) MR0529683DOI10.1512/iumj.1979.28.28037
  9. Tolsa, X., 10.1007/PL00004432, Math. Ann. 319 (2001), 89-149. (2001) MR1812821DOI10.1007/PL00004432
  10. Tolsa, X., 10.1007/BF02393237, Acta Math. 190 (2003), 105-149. (2003) Zbl1060.30031MR1982794DOI10.1007/BF02393237
  11. Tolsa, X., 10.1353/ajm.2004.0021, Am. J. Math. 126 (2004), 523-567. (2004) Zbl1060.30032MR2058383DOI10.1353/ajm.2004.0021
  12. Tolsa, X., Analytic capacity and Calderón-Zygmund theory with non doubling measures. Seminar of Mathematical Analysis, 239-271, Colecc. Abierta, 71, Univ. Sevilla Secr. Publ., Seville, (2004). (2004) MR2117070
  13. Tolsa, X., 10.4007/annals.2005.162.1243, Ann. Math. 162 (2005), 1243-1304. (2005) Zbl1097.30020MR2179730DOI10.4007/annals.2005.162.1243
  14. Tolsa, X., Painlevé's problem and analytic capacity, Collect. Math. Extra (2006), 89-125. (2006) Zbl1105.30015MR2264206
  15. Verdera, J., 10.5565/PUBLMAT_Esco02_12, Publ. Mat. Extra (2002), 275-292. (2002) Zbl1025.42008MR1964824DOI10.5565/PUBLMAT_Esco02_12
  16. Volberg, A., Calderón-Zygmund capacities and operators on nonhomogeneous spaces CBMS Regional Conference Series in Mathematics, 100, Amer. Math. Soc., Providence, RI, (2003). (2003) MR2019058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.