Indefinite numerical range of matrices
N. Bebiano; J. da Providência; R. Teixeira
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 1, page 221-239
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBebiano, N., Providência, J. da, and Teixeira, R.. "Indefinite numerical range of $3\times 3$ matrices." Czechoslovak Mathematical Journal 59.1 (2009): 221-239. <http://eudml.org/doc/37919>.
@article{Bebiano2009,
abstract = {The point equation of the associated curve of the indefinite numerical range is derived, following Fiedler’s approach for definite inner product spaces. The classification of the associated curve is presented in the $3\times 3$ indefinite case, using Newton’s classification of cubic curves. Illustrative examples of all the different possibilities are given. The results obtained extend to Krein spaces results of Kippenhahn on the classical numerical range.},
author = {Bebiano, N., Providência, J. da, Teixeira, R.},
journal = {Czechoslovak Mathematical Journal},
keywords = {indefinite numerical range; indefinite inner product space; plane algebraic curve; indefinite numerical range; indefinite inner product space; plane algebraic curve; krein spaces},
language = {eng},
number = {1},
pages = {221-239},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Indefinite numerical range of $3\times 3$ matrices},
url = {http://eudml.org/doc/37919},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Bebiano, N.
AU - Providência, J. da
AU - Teixeira, R.
TI - Indefinite numerical range of $3\times 3$ matrices
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 221
EP - 239
AB - The point equation of the associated curve of the indefinite numerical range is derived, following Fiedler’s approach for definite inner product spaces. The classification of the associated curve is presented in the $3\times 3$ indefinite case, using Newton’s classification of cubic curves. Illustrative examples of all the different possibilities are given. The results obtained extend to Krein spaces results of Kippenhahn on the classical numerical range.
LA - eng
KW - indefinite numerical range; indefinite inner product space; plane algebraic curve; indefinite numerical range; indefinite inner product space; plane algebraic curve; krein spaces
UR - http://eudml.org/doc/37919
ER -
References
top- Ball, W. W. R., On Newton's classification of cubic curves, Proc. London Math. Soc. 22 (1890), 104-143 3.0778.05. (1890)
- Bebiano, N., Lemos, R., Providência, J. da, Soares, G., 10.1080/0308108031000134981, Linear and Multilinear Algebra 52 (2004), 203-233. (2004) MR2074863DOI10.1080/0308108031000134981
- Bebiano, N., Lemos, R., Providência, J. da, Soares, G., On the geometry of numerical ranges in spaces with an indefinite inner product, Linear Algebra Appl. 399 (2005), 17-34. (2005) MR2152407
- Brieskorn, E., Knörrer, H., Plane Algebraic Curves, Birkhäuser Verlag, Basel (1986). (1986) MR0886476
- Fiedler, M., 10.1016/0024-3795(81)90169-5, Linear Algebra Appl. 37 (1981), 81-96. (1981) Zbl0452.15024MR0636211DOI10.1016/0024-3795(81)90169-5
- Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, New York (1985). (1985) Zbl0576.15001MR0832183
- Horn, R. A., Johnson, C. R., Topics in Matrix Analysis, Cambridge University Press, New York (1991). (1991) Zbl0729.15001MR1091716
- Kippenhahn, R., 10.1002/mana.19510060306, Math. Nachr. 6 (1951), 193-228. (1951) Zbl0044.16201MR0059242DOI10.1002/mana.19510060306
- Li, C.-K., Rodman, L., 10.1137/S0895479893249630, SIAM J. Matrix Anal. Appl. 15 (1994), 1256-1265. (1994) Zbl0814.15023MR1293915DOI10.1137/S0895479893249630
- Li, C.-K., Rodman, L., Shapes and computer generation of numerical ranges of Krein space operators, Electr. J. Linear Algebra 3 (1998), 31-47. (1998) Zbl0905.47027MR1617817
- Li, C.-K., Tsing, N. K., Uhlig, F., Numerical ranges of an operator in an indefinite inner product space, Electr. J. Linear Algebra 1 (1996), 1-17. (1996) MR1401906
- Murnaghan, F. D., 10.1073/pnas.18.3.246, Proc. Nat. Acad. Sci. USA 18 (1932), 246-248. (1932) Zbl0004.05003DOI10.1073/pnas.18.3.246
- Nakazato, H., Bebiano, N., Providência, J. da, The -Numerical Range of a -Hermitian Matrix and Related Inequalities, Linear Algebra Appl. 428 (2008), 2995-3014. (2008) MR2416604
- Nakazato, H., Psarrakos, P., 10.1016/S0024-3795(01)00374-3, Linear Algebra Appl. 338 (2001), 105-123. (2001) Zbl0996.15018MR1861116DOI10.1016/S0024-3795(01)00374-3
- Psarrakos, P., 10.1016/S0024-3795(00)00145-2, Linear Algebra Appl. 317 (2000), 127-141. (2000) Zbl0966.15014MR1782206DOI10.1016/S0024-3795(00)00145-2
- Shapiro, H., 10.1016/0024-3795(82)90212-9, Linear Algebra Appl. 45 (1982), 97-108. (1982) Zbl0495.15007MR0660980DOI10.1016/0024-3795(82)90212-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.