Going down in (semi)lattices of finite Moore families and convex geometries

Bordalo Gabriela; Caspard Nathalie; Monjardet Bernard

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 1, page 249-271
  • ISSN: 0011-4642

Abstract

top
In this paper we first study what changes occur in the posets of irreducible elements when one goes from an arbitrary Moore family (respectively, a convex geometry) to one of its lower covers in the lattice of all Moore families (respectively, in the semilattice of all convex geometries) defined on a finite set. Then we study the set of all convex geometries which have the same poset of join-irreducible elements. We show that this set—ordered by set inclusion—is a ranked join-semilattice and we characterize its cover relation. We prove that the lattice of all ideals of a given poset P is the only convex geometry having a poset of join-irreducible elements isomorphic to P if and only if the width of P is less than 3. Finally, we give an algorithm for computing all convex geometries having the same poset of join-irreducible elements.

How to cite

top

Gabriela, Bordalo, Nathalie, Caspard, and Bernard, Monjardet. "Going down in (semi)lattices of finite Moore families and convex geometries." Czechoslovak Mathematical Journal 59.1 (2009): 249-271. <http://eudml.org/doc/37921>.

@article{Gabriela2009,
abstract = {In this paper we first study what changes occur in the posets of irreducible elements when one goes from an arbitrary Moore family (respectively, a convex geometry) to one of its lower covers in the lattice of all Moore families (respectively, in the semilattice of all convex geometries) defined on a finite set. Then we study the set of all convex geometries which have the same poset of join-irreducible elements. We show that this set—ordered by set inclusion—is a ranked join-semilattice and we characterize its cover relation. We prove that the lattice of all ideals of a given poset $P$ is the only convex geometry having a poset of join-irreducible elements isomorphic to $P$ if and only if the width of $P$ is less than 3. Finally, we give an algorithm for computing all convex geometries having the same poset of join-irreducible elements.},
author = {Gabriela, Bordalo, Nathalie, Caspard, Bernard, Monjardet},
journal = {Czechoslovak Mathematical Journal},
keywords = {closure system; Moore family; convex geometry; (semi)lattice; algorithm; closure system; Moore family; convex geometry; semilattice; algorithm},
language = {eng},
number = {1},
pages = {249-271},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Going down in (semi)lattices of finite Moore families and convex geometries},
url = {http://eudml.org/doc/37921},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Gabriela, Bordalo
AU - Nathalie, Caspard
AU - Bernard, Monjardet
TI - Going down in (semi)lattices of finite Moore families and convex geometries
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 249
EP - 271
AB - In this paper we first study what changes occur in the posets of irreducible elements when one goes from an arbitrary Moore family (respectively, a convex geometry) to one of its lower covers in the lattice of all Moore families (respectively, in the semilattice of all convex geometries) defined on a finite set. Then we study the set of all convex geometries which have the same poset of join-irreducible elements. We show that this set—ordered by set inclusion—is a ranked join-semilattice and we characterize its cover relation. We prove that the lattice of all ideals of a given poset $P$ is the only convex geometry having a poset of join-irreducible elements isomorphic to $P$ if and only if the width of $P$ is less than 3. Finally, we give an algorithm for computing all convex geometries having the same poset of join-irreducible elements.
LA - eng
KW - closure system; Moore family; convex geometry; (semi)lattice; algorithm; closure system; Moore family; convex geometry; semilattice; algorithm
UR - http://eudml.org/doc/37921
ER -

References

top
  1. Barbut, M., Monjardet, B., Ordre et Classification, Algèbre et Combinatoire, tomes I--II, Hachette, Paris (1970). (1970) MR0419311
  2. Berman, J., Bordalo, G., 10.1016/S0012-365X(97)81832-8, Disc. Math. 178 (1998), 237-243. (1998) Zbl0898.06004MR1483754DOI10.1016/S0012-365X(97)81832-8
  3. Bordalo, G., Monjardet, B., 10.1007/BF00405597, Order 13 (1996), 379-390. (1996) Zbl0891.06001MR1452521DOI10.1007/BF00405597
  4. Bordalo, G., Monjardet, B., 10.1007/s00012-002-8183-2, Alg. Univ. 47 (2002), 183-200. (2002) Zbl1058.06001MR1916615DOI10.1007/s00012-002-8183-2
  5. Bordalo, G., Monjardet, B., 10.7151/dmgaa.1065, Discuss. Math. Gen. Algebra Appl. 23 (2003), 85-100. (2003) Zbl1057.06001MR2070375DOI10.7151/dmgaa.1065
  6. Caspard, N., 10.1023/A:1006444906980, Order 16 (1999), 227-230. (1999) Zbl0959.06005MR1765728DOI10.1023/A:1006444906980
  7. Caspard, N., Monjardet, B., 10.1016/S0166-218X(02)00209-3, Disc. Appl. Math. 127 (2003), 241-269. (2003) MR1984087DOI10.1016/S0166-218X(02)00209-3
  8. Caspard, N., Monjardet, B., Some lattices of closure systems, Disc. Math. Theor. Comput. Sci. 6 (2004), 163-190. (2004) Zbl1062.06005MR2041845
  9. Chacron, J., Nouvelles correspondances de Galois, Bull. Soc. Math. Belgique 23 (1971), 167-178. (1971) Zbl0311.06003MR0302514
  10. Davey, B. A., Priestley, H. A., Introduction to Lattices and Order, Cambridge University Press, Cambridge (1990). (1990) Zbl0701.06001MR1058437
  11. Dilworth, R. P., 10.2307/1968857, Ann. of Math. 41 (1940), 771-777. (1940) MR0002844DOI10.2307/1968857
  12. Edelman, P. H., Jamison, R. E., 10.1007/BF00149365, Geom. Dedicata 19 (1985), 247-270. (1985) Zbl0577.52001MR0815204DOI10.1007/BF00149365
  13. Erné, M., 10.1007/BF00383404, Order 8 (1991), 197-221. (1991) MR1137911DOI10.1007/BF00383404
  14. Lorrain, F., 10.2307/2316662, Amer. Math. Monthly 76 (1969), 616-627. (1969) Zbl0207.21201MR0248715DOI10.2307/2316662
  15. Monjardet, B., The consequences of Dilworth's work on lattices with unique irreducible decompositions, Bogart, K. P., Freese, R., Kung, J. The Dilworth theorems. Selected papers of Robert P. Dilworth. Birkhaüser, Boston (1990), 192-201. (1990) MR1111496
  16. Monjardet, B., Raderanirina, V., 10.1016/S0165-4896(00)00061-5, Math. Social Sci. 41 (2001), 131-150. (2001) Zbl0994.91012MR1806682DOI10.1016/S0165-4896(00)00061-5
  17. Nation, J. B., Pogel, A., 10.1023/A:1005805026315, Order 14 (1997), 1-7. (1997) Zbl0888.06003MR1468951DOI10.1023/A:1005805026315
  18. Niederle, J., 10.1007/BF01108627, Order 12 (1995), 189-210. (1995) Zbl0838.06004MR1354802DOI10.1007/BF01108627
  19. Nourine, L., Private communication, (2003). (2003) 
  20. "Ore, O., 10.1215/S0012-7094-43-01072-5, Duke Math. J. 10 (1943), 761-785. (1943) MR0009595DOI10.1215/S0012-7094-43-01072-5
  21. Rabinovitch, I., Rival, I., 10.1016/0012-365X(79)90082-7, Disc. Math. 25 (1979), 275-279. (1979) Zbl0421.06012MR0534944DOI10.1016/0012-365X(79)90082-7
  22. Reading, N., 10.1023/A:1015287106470, Order 19 (2002), 73-100. (2002) Zbl1007.05097MR1902662DOI10.1023/A:1015287106470
  23. Schmid, J., 10.1023/A:1015291410777, Order 19 (2002), 11-34. (2002) Zbl1006.06006MR1901058DOI10.1023/A:1015291410777
  24. Wild, M., 10.1006/aima.1994.1069, Adv. Math. 108 (1994), 118-139. (1994) Zbl0863.54002MR1293585DOI10.1006/aima.1994.1069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.