Locally flat Banach spaces

Michal Johanis

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 1, page 273-284
  • ISSN: 0011-4642

Abstract

top
The notion of functions dependent locally on finitely many coordinates plays an important role in the theory of smoothness and renormings on Banach spaces, especially when higher order smoothness is involved. In this note we investigate the structural properties of Banach spaces admitting (arbitrary) bump functions depending locally on finitely many coordinates.

How to cite

top

Johanis, Michal. "Locally flat Banach spaces." Czechoslovak Mathematical Journal 59.1 (2009): 273-284. <http://eudml.org/doc/37922>.

@article{Johanis2009,
abstract = {The notion of functions dependent locally on finitely many coordinates plays an important role in the theory of smoothness and renormings on Banach spaces, especially when higher order smoothness is involved. In this note we investigate the structural properties of Banach spaces admitting (arbitrary) bump functions depending locally on finitely many coordinates.},
author = {Johanis, Michal},
journal = {Czechoslovak Mathematical Journal},
keywords = {polyhedrality},
language = {eng},
number = {1},
pages = {273-284},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Locally flat Banach spaces},
url = {http://eudml.org/doc/37922},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Johanis, Michal
TI - Locally flat Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 273
EP - 284
AB - The notion of functions dependent locally on finitely many coordinates plays an important role in the theory of smoothness and renormings on Banach spaces, especially when higher order smoothness is involved. In this note we investigate the structural properties of Banach spaces admitting (arbitrary) bump functions depending locally on finitely many coordinates.
LA - eng
KW - polyhedrality
UR - http://eudml.org/doc/37922
ER -

References

top
  1. Bonic, R., Frampton, J., Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877-898. (1966) Zbl0143.35202MR0198492
  2. Deville, R., Godefroy, G., Zizler, V., Smoothness and Renormings in Banach Spaces. Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific & Technical; John Wiley & Sons, Inc. Harlow; New York (1993). (1993) MR1211634
  3. Deville, R., Godefroy, G., Zizler, V., 10.1007/BF01444554, Math. Ann. 288 (1990), 613-625. (1990) Zbl0699.46009MR1081267DOI10.1007/BF01444554
  4. Fonf, V. P., 10.1007/BF01137813, Math. Notes 30 (1982), 809-813. (1982) MR0638435DOI10.1007/BF01137813
  5. Fonf, V. P., 10.1007/BF01056615, Uk. Math. J. 42 (1990), 1145-1148. (1990) Zbl0728.46018MR1093646DOI10.1007/BF01056615
  6. Fabian, M., Zizler, V., 10.1017/S0004972700031233, Bull. Aust. Math. Soc. 56 (1997), 447-451. (1997) Zbl0901.46007MR1490662DOI10.1017/S0004972700031233
  7. Godefroy, G., Pelant, J., Whitfield, J. H. M., Zizler, V., Banach space properties of Ciesielski-Pol’s C ( K ) space, Proc. Am. Math. Soc. 103 (1988), 1087-1093. (1988) Zbl0666.46019MR0954988
  8. Godefroy, G., Troyanski, S., Whitfield, J. H. M., Zizler, V., 10.1016/0022-1236(83)90073-3, J. Funct. Anal. 52 (1983), 344-352. (1983) Zbl0517.46010MR0712585DOI10.1016/0022-1236(83)90073-3
  9. Hájek, P., 10.2307/2161911, Proc. Am. Math. Soc. 123 (1995), 3817-3821. (1995) MR1285993DOI10.2307/2161911
  10. Hájek, P., 10.1090/S0002-9939-03-06819-9, Proc. Am. Math. Soc. 131 (2003), 2049-2051. (2003) Zbl1017.46002MR1963749DOI10.1090/S0002-9939-03-06819-9
  11. Hájek, P., 10.1112/S0025579300000401, Mathematika 52 (2005), 131-138. (2005) Zbl1112.46008MR2261849DOI10.1112/S0025579300000401
  12. Hájek, P., Johanis, M., 10.1016/j.jmaa.2007.06.006, J. Math. Anal. Appl. 338 (2008), 1131-1139. (2008) MR2386487DOI10.1016/j.jmaa.2007.06.006
  13. Hájek, P., Johanis, M., 10.1007/s11856-008-1062-6, Israel J. Math 168 (2008), 167-188. (2008) MR2448056DOI10.1007/s11856-008-1062-6
  14. Haydon, R. G., Normes infiniment différentiables sur certains espaces de Banach, C. R. Acad. Sci., Paris, Sér. I 315 (1992), 1175-1178 French. (1992) Zbl0788.46008MR1194512
  15. Haydon, R. G., 10.1093/qmath/47.4.455, Q. J. Math., Oxf. II. Ser. 47 (1996), 455-468. (1996) Zbl0945.46024MR1460234DOI10.1093/qmath/47.4.455
  16. Haydon, R. G., 10.1112/S0024611599001768, Proc. Lond. Math. Soc., III. Ser. 78 (1999), 541-584. (1999) Zbl1036.46003MR1674838DOI10.1112/S0024611599001768
  17. Johnson, W. B., (Eds.), J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, Vol. 1, Elsevier Amsterdam (2001). (2001) MR1863689
  18. Klee, V. L., 10.1007/BF02546358, Acta Math. 103 (1960), 243-267. (1960) Zbl0148.16203MR0139073DOI10.1007/BF02546358
  19. Leung, D. H., 10.1007/BF02772988, Isr. J. Math. 87 (1994), 117-128. (1994) Zbl0804.46014MR1286820DOI10.1007/BF02772988
  20. Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces. I: Sequence Spaces, Springer (1977). (1977) Zbl0362.46013MR0500056
  21. Pechanec, J., Whitfield, J. H. M., Zizler, V., Norms locally dependent on finitely many coordinates, An. Acad. Bras. Cienc. 53 (1981), 415-417. (1981) Zbl0486.46020MR0663236
  22. Talagrand, M., 10.1007/BF02764961, Isr. J. Math. 54 (1986), 327-334 French. (1986) Zbl0611.46023MR0853457DOI10.1007/BF02764961
  23. Toruńczyk, H., 10.4064/sm-46-1-43-51, Stud. Math. 46 (1973), 43-51. (1973) MR0339255DOI10.4064/sm-46-1-43-51

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.