A simple formula for an analogue of conditional Wiener integrals and its applications. II
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 2, page 431-452
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCho, Dong Hyun. "A simple formula for an analogue of conditional Wiener integrals and its applications. II." Czechoslovak Mathematical Journal 59.2 (2009): 431-452. <http://eudml.org/doc/37933>.
@article{Cho2009,
abstract = {Let $C[0,T]$ denote the space of real-valued continuous functions on the interval $[0,T]$ with an analogue $w_\varphi $ of Wiener measure and for a partition $ 0=t_0< t_1< \cdots < t_n <t_\{n+1\}= T$ of $[0, T]$, let $X_n\: C[0,T]\rightarrow \mathbb \{R\}^\{n+1\}$ and $X_\{n+1\} \: C [0, T]\rightarrow \mathbb \{R\}^\{n+2\}$ be given by $X_n(x) = ( x(t_0), x(t_1), \cdots , x(t_n))$ and $X_\{n+1\} (x) = ( x(t_0), x(t_1), \cdots , x(t_\{n+1\}))$, respectively. In this paper, using a simple formula for the conditional $w_\varphi $-integral of functions on $C[0, T]$ with the conditioning function $X_\{n+1\}$, we derive a simple formula for the conditional $w_\varphi $-integral of the functions with the conditioning function $X_n$. As applications of the formula with the function $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions of the form $F_m(x) = \int _0^T (x(t))^m d t$ for $x\in C[0, T]$ and for any positive integer $m$. Moreover, with the conditioning $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions in a Banach algebra $\mathcal \{S\}_\{w_\varphi \}$ which is an analogue of the Cameron and Storvick’s Banach algebra $\mathcal \{S\}$. Finally, we derive the conditional analytic Feynman $w_\varphi $-integrals of the functions in $\mathcal \{S\}_\{w_\varphi \}$.},
author = {Cho, Dong Hyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {analogue of Wiener measure; Cameron-Martin translation theorem; conditional analytic Feynman $w_\varphi $-integral; conditional Wiener integral; Kac-Feynman formula; simple formula for conditional $w_\varphi $-integral; analogue of Wiener measure; Cameron-Martin translation theorem; conditional analytic Feynman -integral; conditional Wiener integral; Kac-Feynman formula; simple formula for conditional -integral},
language = {eng},
number = {2},
pages = {431-452},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A simple formula for an analogue of conditional Wiener integrals and its applications. II},
url = {http://eudml.org/doc/37933},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Cho, Dong Hyun
TI - A simple formula for an analogue of conditional Wiener integrals and its applications. II
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 431
EP - 452
AB - Let $C[0,T]$ denote the space of real-valued continuous functions on the interval $[0,T]$ with an analogue $w_\varphi $ of Wiener measure and for a partition $ 0=t_0< t_1< \cdots < t_n <t_{n+1}= T$ of $[0, T]$, let $X_n\: C[0,T]\rightarrow \mathbb {R}^{n+1}$ and $X_{n+1} \: C [0, T]\rightarrow \mathbb {R}^{n+2}$ be given by $X_n(x) = ( x(t_0), x(t_1), \cdots , x(t_n))$ and $X_{n+1} (x) = ( x(t_0), x(t_1), \cdots , x(t_{n+1}))$, respectively. In this paper, using a simple formula for the conditional $w_\varphi $-integral of functions on $C[0, T]$ with the conditioning function $X_{n+1}$, we derive a simple formula for the conditional $w_\varphi $-integral of the functions with the conditioning function $X_n$. As applications of the formula with the function $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions of the form $F_m(x) = \int _0^T (x(t))^m d t$ for $x\in C[0, T]$ and for any positive integer $m$. Moreover, with the conditioning $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions in a Banach algebra $\mathcal {S}_{w_\varphi }$ which is an analogue of the Cameron and Storvick’s Banach algebra $\mathcal {S}$. Finally, we derive the conditional analytic Feynman $w_\varphi $-integrals of the functions in $\mathcal {S}_{w_\varphi }$.
LA - eng
KW - analogue of Wiener measure; Cameron-Martin translation theorem; conditional analytic Feynman $w_\varphi $-integral; conditional Wiener integral; Kac-Feynman formula; simple formula for conditional $w_\varphi $-integral; analogue of Wiener measure; Cameron-Martin translation theorem; conditional analytic Feynman -integral; conditional Wiener integral; Kac-Feynman formula; simple formula for conditional -integral
UR - http://eudml.org/doc/37933
ER -
References
top- Ash, R. B., Real analysis and probability, Academic Press, New York-London (1972). (1972) MR0435320
- Cameron, R. H., Martin, W. T., 10.2307/1969276, Ann. Math. 45 (1944), 386-396. (1944) Zbl0063.00696MR0010346DOI10.2307/1969276
- Cameron, R. H., Storvick, D. A., 10.1007/BFb0097256, Lecture Notes in Math. 798, Springer, Berlin-New York (1980). (1980) Zbl0439.28007MR0577446DOI10.1007/BFb0097256
- Chang, K. S., Chang, J. S., Evaluation of some conditional Wiener integrals, Bull. Korean Math. Soc. 21 (1984), 99-106. (1984) Zbl0576.28023MR0768465
- Cho, D. H., 10.1090/S0002-9947-08-04380-8, Trans. Amer. Math. Soc. 360 (2008), 3795-3811. (2008) Zbl1151.28017MR2386246DOI10.1090/S0002-9947-08-04380-8
- Chung, D. M., Skoug, D., 10.1137/0520064, SIAM J. Math. Anal. 20 (1989), 950-965. (1989) Zbl0678.28007MR1000731DOI10.1137/0520064
- Im, M. K., Ryu, K. S., 10.4134/JKMS.2002.39.5.801, J. Korean Math. Soc. 39 (2002), 801-819. (2002) Zbl1017.28007MR1920906DOI10.4134/JKMS.2002.39.5.801
- Laha, R. G., Rohatgi, V. K., Probability theory, John Wiley & Sons, New York-Chichester-Brisbane (1979). (1979) Zbl0409.60001MR0534143
- Park, C., Skoug, D., 10.2140/pjm.1988.135.381, Pacific J. Math. 135 (1988), 381-394. (1988) Zbl0655.28007MR0968620DOI10.2140/pjm.1988.135.381
- Ryu, K. S., Im, M. K., 10.1090/S0002-9947-02-03077-5, Trans. Amer. Math. Soc. 354 (2002), 4921-4951. (2002) Zbl1017.28008MR1926843DOI10.1090/S0002-9947-02-03077-5
- Yeh, J., 10.2748/tmj/1178229910, Tôhoku Math. J. 30 (1978), 505-515. (1978) Zbl0409.28006MR0516883DOI10.2748/tmj/1178229910
- Yeh, J., 10.2140/pjm.1975.59.623, Pacific J. Math. 59 (1975), 623-638. (1975) Zbl0365.60073MR0390162DOI10.2140/pjm.1975.59.623
- Yeh, J., 10.2140/pjm.1974.52.631, Pacific J. Math. 52 (1974), 631-640. (1974) Zbl0323.60003MR0365644DOI10.2140/pjm.1974.52.631
- Yeh, J., Stochastic processes and the Wiener integral, Marcel Dekker, New York (1973). (1973) Zbl0277.60018MR0474528
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.