A simple formula for an analogue of conditional Wiener integrals and its applications. II

Dong Hyun Cho

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 2, page 431-452
  • ISSN: 0011-4642

Abstract

top
Let C [ 0 , T ] denote the space of real-valued continuous functions on the interval [ 0 , T ] with an analogue w ϕ of Wiener measure and for a partition 0 = t 0 < t 1 < < t n < t n + 1 = T of [ 0 , T ] , let X n C [ 0 , T ] n + 1 and X n + 1 C [ 0 , T ] n + 2 be given by X n ( x ) = ( x ( t 0 ) , x ( t 1 ) , , x ( t n ) ) and X n + 1 ( x ) = ( x ( t 0 ) , x ( t 1 ) , , x ( t n + 1 ) ) , respectively. In this paper, using a simple formula for the conditional w ϕ -integral of functions on C [ 0 , T ] with the conditioning function X n + 1 , we derive a simple formula for the conditional w ϕ -integral of the functions with the conditioning function X n . As applications of the formula with the function X n , we evaluate the conditional w ϕ -integral of the functions of the form F m ( x ) = 0 T ( x ( t ) ) m d t for x C [ 0 , T ] and for any positive integer m . Moreover, with the conditioning X n , we evaluate the conditional w ϕ -integral of the functions in a Banach algebra 𝒮 w ϕ which is an analogue of the Cameron and Storvick’s Banach algebra 𝒮 . Finally, we derive the conditional analytic Feynman w ϕ -integrals of the functions in 𝒮 w ϕ .

How to cite

top

Cho, Dong Hyun. "A simple formula for an analogue of conditional Wiener integrals and its applications. II." Czechoslovak Mathematical Journal 59.2 (2009): 431-452. <http://eudml.org/doc/37933>.

@article{Cho2009,
abstract = {Let $C[0,T]$ denote the space of real-valued continuous functions on the interval $[0,T]$ with an analogue $w_\varphi $ of Wiener measure and for a partition $ 0=t_0< t_1< \cdots < t_n <t_\{n+1\}= T$ of $[0, T]$, let $X_n\: C[0,T]\rightarrow \mathbb \{R\}^\{n+1\}$ and $X_\{n+1\} \: C [0, T]\rightarrow \mathbb \{R\}^\{n+2\}$ be given by $X_n(x) = ( x(t_0), x(t_1), \cdots , x(t_n))$ and $X_\{n+1\} (x) = ( x(t_0), x(t_1), \cdots , x(t_\{n+1\}))$, respectively. In this paper, using a simple formula for the conditional $w_\varphi $-integral of functions on $C[0, T]$ with the conditioning function $X_\{n+1\}$, we derive a simple formula for the conditional $w_\varphi $-integral of the functions with the conditioning function $X_n$. As applications of the formula with the function $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions of the form $F_m(x) = \int _0^T (x(t))^m d t$ for $x\in C[0, T]$ and for any positive integer $m$. Moreover, with the conditioning $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions in a Banach algebra $\mathcal \{S\}_\{w_\varphi \}$ which is an analogue of the Cameron and Storvick’s Banach algebra $\mathcal \{S\}$. Finally, we derive the conditional analytic Feynman $w_\varphi $-integrals of the functions in $\mathcal \{S\}_\{w_\varphi \}$.},
author = {Cho, Dong Hyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {analogue of Wiener measure; Cameron-Martin translation theorem; conditional analytic Feynman $w_\varphi $-integral; conditional Wiener integral; Kac-Feynman formula; simple formula for conditional $w_\varphi $-integral; analogue of Wiener measure; Cameron-Martin translation theorem; conditional analytic Feynman -integral; conditional Wiener integral; Kac-Feynman formula; simple formula for conditional -integral},
language = {eng},
number = {2},
pages = {431-452},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A simple formula for an analogue of conditional Wiener integrals and its applications. II},
url = {http://eudml.org/doc/37933},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Cho, Dong Hyun
TI - A simple formula for an analogue of conditional Wiener integrals and its applications. II
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 431
EP - 452
AB - Let $C[0,T]$ denote the space of real-valued continuous functions on the interval $[0,T]$ with an analogue $w_\varphi $ of Wiener measure and for a partition $ 0=t_0< t_1< \cdots < t_n <t_{n+1}= T$ of $[0, T]$, let $X_n\: C[0,T]\rightarrow \mathbb {R}^{n+1}$ and $X_{n+1} \: C [0, T]\rightarrow \mathbb {R}^{n+2}$ be given by $X_n(x) = ( x(t_0), x(t_1), \cdots , x(t_n))$ and $X_{n+1} (x) = ( x(t_0), x(t_1), \cdots , x(t_{n+1}))$, respectively. In this paper, using a simple formula for the conditional $w_\varphi $-integral of functions on $C[0, T]$ with the conditioning function $X_{n+1}$, we derive a simple formula for the conditional $w_\varphi $-integral of the functions with the conditioning function $X_n$. As applications of the formula with the function $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions of the form $F_m(x) = \int _0^T (x(t))^m d t$ for $x\in C[0, T]$ and for any positive integer $m$. Moreover, with the conditioning $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions in a Banach algebra $\mathcal {S}_{w_\varphi }$ which is an analogue of the Cameron and Storvick’s Banach algebra $\mathcal {S}$. Finally, we derive the conditional analytic Feynman $w_\varphi $-integrals of the functions in $\mathcal {S}_{w_\varphi }$.
LA - eng
KW - analogue of Wiener measure; Cameron-Martin translation theorem; conditional analytic Feynman $w_\varphi $-integral; conditional Wiener integral; Kac-Feynman formula; simple formula for conditional $w_\varphi $-integral; analogue of Wiener measure; Cameron-Martin translation theorem; conditional analytic Feynman -integral; conditional Wiener integral; Kac-Feynman formula; simple formula for conditional -integral
UR - http://eudml.org/doc/37933
ER -

References

top
  1. Ash, R. B., Real analysis and probability, Academic Press, New York-London (1972). (1972) MR0435320
  2. Cameron, R. H., Martin, W. T., 10.2307/1969276, Ann. Math. 45 (1944), 386-396. (1944) Zbl0063.00696MR0010346DOI10.2307/1969276
  3. Cameron, R. H., Storvick, D. A., 10.1007/BFb0097256, Lecture Notes in Math. 798, Springer, Berlin-New York (1980). (1980) Zbl0439.28007MR0577446DOI10.1007/BFb0097256
  4. Chang, K. S., Chang, J. S., Evaluation of some conditional Wiener integrals, Bull. Korean Math. Soc. 21 (1984), 99-106. (1984) Zbl0576.28023MR0768465
  5. Cho, D. H., 10.1090/S0002-9947-08-04380-8, Trans. Amer. Math. Soc. 360 (2008), 3795-3811. (2008) Zbl1151.28017MR2386246DOI10.1090/S0002-9947-08-04380-8
  6. Chung, D. M., Skoug, D., 10.1137/0520064, SIAM J. Math. Anal. 20 (1989), 950-965. (1989) Zbl0678.28007MR1000731DOI10.1137/0520064
  7. Im, M. K., Ryu, K. S., 10.4134/JKMS.2002.39.5.801, J. Korean Math. Soc. 39 (2002), 801-819. (2002) Zbl1017.28007MR1920906DOI10.4134/JKMS.2002.39.5.801
  8. Laha, R. G., Rohatgi, V. K., Probability theory, John Wiley & Sons, New York-Chichester-Brisbane (1979). (1979) Zbl0409.60001MR0534143
  9. Park, C., Skoug, D., 10.2140/pjm.1988.135.381, Pacific J. Math. 135 (1988), 381-394. (1988) Zbl0655.28007MR0968620DOI10.2140/pjm.1988.135.381
  10. Ryu, K. S., Im, M. K., 10.1090/S0002-9947-02-03077-5, Trans. Amer. Math. Soc. 354 (2002), 4921-4951. (2002) Zbl1017.28008MR1926843DOI10.1090/S0002-9947-02-03077-5
  11. Yeh, J., 10.2748/tmj/1178229910, Tôhoku Math. J. 30 (1978), 505-515. (1978) Zbl0409.28006MR0516883DOI10.2748/tmj/1178229910
  12. Yeh, J., 10.2140/pjm.1975.59.623, Pacific J. Math. 59 (1975), 623-638. (1975) Zbl0365.60073MR0390162DOI10.2140/pjm.1975.59.623
  13. Yeh, J., 10.2140/pjm.1974.52.631, Pacific J. Math. 52 (1974), 631-640. (1974) Zbl0323.60003MR0365644DOI10.2140/pjm.1974.52.631
  14. Yeh, J., Stochastic processes and the Wiener integral, Marcel Dekker, New York (1973). (1973) Zbl0277.60018MR0474528

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.