A class of Banach sequence spaces analogous to the space of Popov
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 3, page 573-582
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAzimi, Parviz, and Ledari, A. A.. "A class of Banach sequence spaces analogous to the space of Popov." Czechoslovak Mathematical Journal 59.3 (2009): 573-582. <http://eudml.org/doc/37942>.
@article{Azimi2009,
abstract = {Hagler and the first named author introduced a class of hereditarily $l_1$ Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily $l_p$ Banach spaces for $1\le p<\infty $. Here we use these spaces to introduce a new class of hereditarily $l_p(c_0)$ Banach spaces analogous of the space of Popov. In particular, for $p=1$ the spaces are further examples of hereditarily $l_1$ Banach spaces failing the Schur property.},
author = {Azimi, Parviz, Ledari, A. A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach spaces; Schur property; hereditarily $l_p$; Banach space; Schur property; hereditarily },
language = {eng},
number = {3},
pages = {573-582},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A class of Banach sequence spaces analogous to the space of Popov},
url = {http://eudml.org/doc/37942},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Azimi, Parviz
AU - Ledari, A. A.
TI - A class of Banach sequence spaces analogous to the space of Popov
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 3
SP - 573
EP - 582
AB - Hagler and the first named author introduced a class of hereditarily $l_1$ Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily $l_p$ Banach spaces for $1\le p<\infty $. Here we use these spaces to introduce a new class of hereditarily $l_p(c_0)$ Banach spaces analogous of the space of Popov. In particular, for $p=1$ the spaces are further examples of hereditarily $l_1$ Banach spaces failing the Schur property.
LA - eng
KW - Banach spaces; Schur property; hereditarily $l_p$; Banach space; Schur property; hereditarily
UR - http://eudml.org/doc/37942
ER -
References
top- Azimi, P., A new class of Banach sequence spaces, Bull. of Iranian Math. Society 28 (2002), 57-68. (2002) Zbl1035.46006MR1992259
- Azimi, P., Hagler, J., 10.2140/pjm.1986.122.287, Pacific J. Math. 122 (1986), 287-297. (1986) MR0831114DOI10.2140/pjm.1986.122.287
- Bourgain, J., -subspace of Banach spaces, Lecture notes. Free University of Brussels.
- Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces, Vol. I sequence Spaces, Springer Verlag, Berlin. Zbl0852.46015MR0415253
- Popov, M. M., 10.1090/S0002-9939-05-07758-0, Proc. Amer. Math. Soc. 133 (2005), 2023-2028. (2005) Zbl1080.46007MR2137868DOI10.1090/S0002-9939-05-07758-0
- Popov, M. M., More examples of hereditarily Banach spaces, Ukrainian Math. Bull. 2 (2005), 95-111. (2005) Zbl1166.46304MR2172327
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.