Strong convergence theorems of -strict pseudo-contractions in Hilbert spaces
Xiao Long Qin; Shin Min Kang; Mei Juan Shang
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 3, page 695-706
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topQin, Xiao Long, Kang, Shin Min, and Shang, Mei Juan. "Strong convergence theorems of $k$-strict pseudo-contractions in Hilbert spaces." Czechoslovak Mathematical Journal 59.3 (2009): 695-706. <http://eudml.org/doc/37952>.
@article{Qin2009,
abstract = {Let $K$ be a nonempty closed convex subset of a real Hilbert space $H$ such that $K\pm K\subset K$, $T\: K\rightarrow H$ a $k$-strict pseudo-contraction for some $0\le k<1$ such that $F(T)=\lbrace x\in K\: x=Tx\rbrace \ne \emptyset $. Consider the following iterative algorithm given by \[ \forall x\_1\in K,\quad x\_\{n+1\}=\alpha \_n\gamma f(x\_n)+\beta \_nx\_n+((1-\beta \_n)I-\alpha \_n A)P\_KSx\_n,\quad n\ge 1, \]
where $S\: K\rightarrow H$ is defined by $Sx=kx+(1-k)Tx$, $P_K$ is the metric projection of $H$ onto $K$, $A$ is a strongly positive linear bounded self-adjoint operator, $f$ is a contraction. It is proved that the sequence $\lbrace x_n\rbrace $ generated by the above iterative algorithm converges strongly to a fixed point of $T$, which solves a variational inequality related to the linear operator $A$. Our results improve and extend the results announced by many others.},
author = {Qin, Xiao Long, Kang, Shin Min, Shang, Mei Juan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hilbert space; nonexpansive mapping; strict pseudo-contraction; iterative algorithm; fixed point; Hilbert space; nonexpansive mapping; strict pseudocontraction; iterative algorithm; fixed point; strong convergence},
language = {eng},
number = {3},
pages = {695-706},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong convergence theorems of $k$-strict pseudo-contractions in Hilbert spaces},
url = {http://eudml.org/doc/37952},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Qin, Xiao Long
AU - Kang, Shin Min
AU - Shang, Mei Juan
TI - Strong convergence theorems of $k$-strict pseudo-contractions in Hilbert spaces
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 3
SP - 695
EP - 706
AB - Let $K$ be a nonempty closed convex subset of a real Hilbert space $H$ such that $K\pm K\subset K$, $T\: K\rightarrow H$ a $k$-strict pseudo-contraction for some $0\le k<1$ such that $F(T)=\lbrace x\in K\: x=Tx\rbrace \ne \emptyset $. Consider the following iterative algorithm given by \[ \forall x_1\in K,\quad x_{n+1}=\alpha _n\gamma f(x_n)+\beta _nx_n+((1-\beta _n)I-\alpha _n A)P_KSx_n,\quad n\ge 1, \]
where $S\: K\rightarrow H$ is defined by $Sx=kx+(1-k)Tx$, $P_K$ is the metric projection of $H$ onto $K$, $A$ is a strongly positive linear bounded self-adjoint operator, $f$ is a contraction. It is proved that the sequence $\lbrace x_n\rbrace $ generated by the above iterative algorithm converges strongly to a fixed point of $T$, which solves a variational inequality related to the linear operator $A$. Our results improve and extend the results announced by many others.
LA - eng
KW - Hilbert space; nonexpansive mapping; strict pseudo-contraction; iterative algorithm; fixed point; Hilbert space; nonexpansive mapping; strict pseudocontraction; iterative algorithm; fixed point; strong convergence
UR - http://eudml.org/doc/37952
ER -
References
top- Acedo, G. L., Xu, H. K., 10.1016/j.na.2006.08.036, Nonlinear Anal. 67 (2007), 2258-2271. (2007) Zbl1133.47050MR2331876DOI10.1016/j.na.2006.08.036
- Browder, F. E., 10.1073/pnas.53.6.1272, Proc. Natl. Acad. Sci. USA 53 (1965), 1272-1276. (1965) MR0178324DOI10.1073/pnas.53.6.1272
- Browder, F. E., 10.1007/BF00251595, Arch. Ration. Mech. Anal. 24 (1967), 82-90. (1967) Zbl0148.13601MR0206765DOI10.1007/BF00251595
- Browder, F. E., Petryshyn, W. V., 10.1016/0022-247X(67)90085-6, J. Math. Anal. Appl. 20 (1967), 197-228. (1967) Zbl0153.45701MR0217658DOI10.1016/0022-247X(67)90085-6
- Halpern, B., 10.1090/S0002-9904-1967-11864-0, Bull. Amer. Math. Soc. 73 (1967), 957-961. (1967) MR0218938DOI10.1090/S0002-9904-1967-11864-0
- Lions, P. L., Approximation de points fixes de contractions, C.R. Acad. Sci. Paris Ser. A--B 284 (1977), A1357--A1359. (1977) Zbl0349.47046MR0470770
- Marino, G., Xu, H. K., 10.1016/j.jmaa.2006.06.055, J. Math. Anal. Appl. 329 (2007), 336-349. (2007) MR2306805DOI10.1016/j.jmaa.2006.06.055
- Marino, G., Xu, H. K., 10.1016/j.jmaa.2005.05.028, J. Math. Anal. Appl. 318 (2006), 43-52. (2006) Zbl1095.47038MR2210870DOI10.1016/j.jmaa.2005.05.028
- Moudafi, A., 10.1006/jmaa.1999.6615, J. Math. Anal. Appl. 241 (2000), 46-55. (2000) Zbl0957.47039MR1738332DOI10.1006/jmaa.1999.6615
- Suzuki, T., Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl. (2005), 103-123. (2005) Zbl1123.47308MR2172156
- Wittmann, R., 10.1007/BF01190119, Arch. Math. 58 (1992), 486-491. (1992) Zbl0797.47036MR1156581DOI10.1007/BF01190119
- Xu, H. K., 10.1023/A:1023073621589, J. Optim. Theory Appl. 116 (2003), 659-678. (2003) Zbl1043.90063MR1977756DOI10.1023/A:1023073621589
- Xu, H. K., 10.1112/S0024610702003332, J. London Math. Soc. 66 (2002), 240-256. (2002) Zbl1013.47032MR1911872DOI10.1112/S0024610702003332
- Xu, H. K., 10.1017/S0004972700020116, Bull. Austral. Math. Soc. 65 (2002), 109-113. (2002) Zbl1030.47036MR1889384DOI10.1017/S0004972700020116
- Xu, H. K., 10.1016/j.jmaa.2004.04.059, J. Math. Anal. Appl. 298 (2004), 279-291. (2004) Zbl1061.47060MR2086546DOI10.1016/j.jmaa.2004.04.059
- Zhou, H., 10.1016/j.na.2007.05.032, Nonlinear Analysis 69 (2008), 456-462. (2008) MR2426262DOI10.1016/j.na.2007.05.032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.