An extension theorem for modular measures on effect algebras

Giuseppina Barbieri

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 3, page 707-719
  • ISSN: 0011-4642

Abstract

top
We prove an extension theorem for modular measures on lattice ordered effect algebras. This is used to obtain a representation of these measures by the classical ones. With the aid of this theorem we transfer control theorems, Vitali-Hahn-Saks, Nikodým theorems and range theorems to this setting.

How to cite

top

Barbieri, Giuseppina. "An extension theorem for modular measures on effect algebras." Czechoslovak Mathematical Journal 59.3 (2009): 707-719. <http://eudml.org/doc/37953>.

@article{Barbieri2009,
abstract = {We prove an extension theorem for modular measures on lattice ordered effect algebras. This is used to obtain a representation of these measures by the classical ones. With the aid of this theorem we transfer control theorems, Vitali-Hahn-Saks, Nikodým theorems and range theorems to this setting.},
author = {Barbieri, Giuseppina},
journal = {Czechoslovak Mathematical Journal},
keywords = {effect algebras; modular measures; extension; Vitali-Hahn-Saks theorem; Nikodým theorem; decomposition theorem; control theorems; range; Liapunoff theorem; effect algebra; modular measure; Vitali-Hahn-Saks theorem; Nikodým theorem; decomposition theorem; control theorem; Lyapunov theorem},
language = {eng},
number = {3},
pages = {707-719},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An extension theorem for modular measures on effect algebras},
url = {http://eudml.org/doc/37953},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Barbieri, Giuseppina
TI - An extension theorem for modular measures on effect algebras
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 3
SP - 707
EP - 719
AB - We prove an extension theorem for modular measures on lattice ordered effect algebras. This is used to obtain a representation of these measures by the classical ones. With the aid of this theorem we transfer control theorems, Vitali-Hahn-Saks, Nikodým theorems and range theorems to this setting.
LA - eng
KW - effect algebras; modular measures; extension; Vitali-Hahn-Saks theorem; Nikodým theorem; decomposition theorem; control theorems; range; Liapunoff theorem; effect algebra; modular measure; Vitali-Hahn-Saks theorem; Nikodým theorem; decomposition theorem; control theorem; Lyapunov theorem
UR - http://eudml.org/doc/37953
ER -

References

top
  1. Avallone, A., Lattice uniformities on orthomodular structures, Math. Slovaca 51 (2001), 403-419. (2001) Zbl1015.28014MR1864109
  2. Avallone, A., Cafiero and Nikodým boundedness theorems in effect algebras, Ital. J. Pure Appl. Math. 20 (2006), 203-214. (2006) Zbl1121.28015MR2247423
  3. Avallone, A., 10.2478/s12175-007-0004-9, Math. Slovaca 57 (2007), 129-140. (2007) Zbl1150.28009MR2357812DOI10.2478/s12175-007-0004-9
  4. Avallone, A., Barbieri, G., Vitolo, P., Hahn decomposition of modular measures and applications, Comment. Math. Prace Mat. 43 (2003), 149-168. (2003) Zbl1043.28009MR2029889
  5. Avallone, A., Barbieri, G., Vitolo, P., Weber, H., Decomposition of effect algebras and the Hammer-Sobczyk theorem, (to appear) in Algebra Universalis. Zbl1171.28004MR2480629
  6. Avallone, A., Basile, A., 10.1016/S0022-247X(03)00274-9, J. Math. Anal. Appl. 286 (2003), 378-390. (2003) Zbl1052.28011MR2008838DOI10.1016/S0022-247X(03)00274-9
  7. Avallone, A., Simone, A. De, Vitolo, P., Effect algebras and extensions of measures, Bollettino U.M.I. 9-B (2006), 423-444. (2006) Zbl1115.28010MR2233145
  8. Avallone, A., Rinauro, S., Vitolo, P., Boundedness and convergence theorems in effect algebras, Tatra Mountains Math. Publ. 37 (2007), 1-16. (2007) Zbl1164.28002MR2372445
  9. Avallone, A., Vitolo, P., Decomposition and control theorems for measures on effect algebras, Sci. Math. Japon 58 (2003), 1-14. (2003) MR1987813
  10. Avallone, A., Vitolo, P., Congruences and ideals of effect algebras, Order 20 (2003), 67-77. (2003) Zbl1030.03047MR1993411
  11. Basile, A., Controls of families of finitely additive functions, Ricerche Mat. 35 (1986), 291-302. (1986) Zbl0648.28007MR0932439
  12. Barbieri, G., A note on fuzzy measures, J. Electr. Eng. 52 (2001), 67-70. (2001) Zbl1045.28012MR1748120
  13. Barbieri, G., Lyapunov’s theorem for measures on D -posets, Internat. J. Theoret. Phys. 43 (2004), 1613-1623. (2004) Zbl1081.81007MR2108298
  14. Rao, K. P. S. Bhaskara, Rao, M. Bhaskara, Theory of Charges, A Study of Finitely Additive Measures. Academic Press, Inc. New York (1983). (1983) MR0751777
  15. Bennett, M. K., Foulis, D. J., Effect algebras and unsharp quantum logics, Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. Found. Phys. 24 (1994), 1331-1352. (1994) MR1304942
  16. Diestel, J., Uhl, J. J., Vector Measures, Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I. (1977). (1977) Zbl0369.46039MR0453964
  17. Dvurecenskij, A., Pulmannovà, S., New Trends in Quantum Structures, Kluwer Academic Publishers, Bratislava (2000). (2000) MR1861369
  18. Fischer, W., Schoeler, U., The range of vector measures in Orlicz spaces, Studia Math. 59 (1976), 53-61. (1976) MR0427580
  19. Fleischer, I., Traynor, T., Equivalence of group-valued measures on an abstract lattice, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 549-556. (1980) Zbl0514.28004MR0628641
  20. Foulis, D., Greechie, R. J., Pulmannová, S., The center of an effect algebra, Order 12 (1995), 91-106. (1995) MR1336539
  21. Kadets, V. M., A remark on Lyapunov's theorem on a vector measure, Russian Funktsional. Anal. i Prilozhen. 25 (1991), 78-80 Translation in Funct. Anal. Appl. 25 (1992), 295-297. (1992) MR1167727
  22. Kadets, V. M., Shekhtman, G., Lyapunov’s theorem for l p -valued measures, Russian Algebra i Analiz 4 (1992), 148-154 Translation in St. Petersburg Math. J. 4 (1993), 961-966. (1993) MR1202728
  23. Kluvánek, I., The range of a vector-valued measure, Math. Systems Theory 7 (1973), 44-54. (1973) MR0322131
  24. Shapiro, J., On convexity and compactness in F -spaces with bases, Indiana Univ. Math. J. 21 (1971/72), 1073-1090. (1971) MR0295037
  25. Uhl, J., The range of a vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158-163. (1969) Zbl0182.46903MR0264029
  26. Weber, H., Group- and vector-valued s -bounded contents, Lecture Notes in Math. 1089, Springer (1984), 181-198. (1984) Zbl0552.28011MR0786697
  27. Weber, H., Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and Nikodým's boundedness theorem, Rocky Mountain J. Math. 16 (1986), 253-275. (1986) Zbl0604.28006MR0843053
  28. Weber, H., Uniform lattices. I. A generalization of topological Riesz spaces and topological Boolean rings, Ann. Mat. Pura Appl. 160 (1991), 1992 547-570. Zbl0790.06006MR1163215
  29. Weber, H., Uniform lattices. II. Order continuity and exhaustivity, Ann. Mat. Pura Appl. 165 (1993), 133-158. (1993) Zbl0799.06014MR1271416
  30. Weber, H., On modular functions, Funct. Approx. Comment. Math. 24 (1996), 35-52. (1996) Zbl0887.06011MR1453447
  31. Weber, H., Uniform lattices and modular functions, Atti Sem. Mat. Fis. Univ. Modena XLVII (1999), 159-182. (1999) Zbl0989.28007MR1694416
  32. Weber, H., FN-topologies and group-valued measures. Handbook of measure theory, Vol. I, II, 703-743 North-Holland, Amsterdam (2002). (2002) MR1954626
  33. Weber, H., Two extension theorems. Modular functions on complemented lattices, Czech. Math. J. 52 (2002), 55-74. (2002) Zbl0998.06006MR1885457

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.