Minus total domination in graphs

Hua Ming Xing; Hai-Long Liu

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 861-870
  • ISSN: 0011-4642

Abstract

top
A three-valued function f V { - 1 , 0 , 1 } defined on the vertices of a graph G = ( V , E ) is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every v V , f ( N ( v ) ) 1 , where N ( v ) consists of every vertex adjacent to v . The weight of an MTDF is f ( V ) = f ( v ) , over all vertices v V . The minus total domination number of a graph G , denoted γ t - ( G ) , equals the minimum weight of an MTDF of G . In this paper, we discuss some properties of minus total domination on a graph G and obtain a few lower bounds for γ t - ( G ) .

How to cite

top

Xing, Hua Ming, and Liu, Hai-Long. "Minus total domination in graphs." Czechoslovak Mathematical Journal 59.4 (2009): 861-870. <http://eudml.org/doc/37963>.

@article{Xing2009,
abstract = {A three-valued function $f\: V\rightarrow \lbrace -1,0,1\rbrace $ defined on the vertices of a graph $G=(V,E)$ is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every $v\in V$, $f(N(v))\ge 1$, where $N(v)$ consists of every vertex adjacent to $v$. The weight of an MTDF is $f(V)=\sum f(v)$, over all vertices $v\in V$. The minus total domination number of a graph $G$, denoted $\gamma _t^\{-\}(G)$, equals the minimum weight of an MTDF of $G$. In this paper, we discuss some properties of minus total domination on a graph $G$ and obtain a few lower bounds for $\gamma _t^\{-\}(G)$.},
author = {Xing, Hua Ming, Liu, Hai-Long},
journal = {Czechoslovak Mathematical Journal},
keywords = {minus domination; total domination; minus total domination; minus domination; total domination; minus total domination},
language = {eng},
number = {4},
pages = {861-870},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Minus total domination in graphs},
url = {http://eudml.org/doc/37963},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Xing, Hua Ming
AU - Liu, Hai-Long
TI - Minus total domination in graphs
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 861
EP - 870
AB - A three-valued function $f\: V\rightarrow \lbrace -1,0,1\rbrace $ defined on the vertices of a graph $G=(V,E)$ is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every $v\in V$, $f(N(v))\ge 1$, where $N(v)$ consists of every vertex adjacent to $v$. The weight of an MTDF is $f(V)=\sum f(v)$, over all vertices $v\in V$. The minus total domination number of a graph $G$, denoted $\gamma _t^{-}(G)$, equals the minimum weight of an MTDF of $G$. In this paper, we discuss some properties of minus total domination on a graph $G$ and obtain a few lower bounds for $\gamma _t^{-}(G)$.
LA - eng
KW - minus domination; total domination; minus total domination; minus domination; total domination; minus total domination
UR - http://eudml.org/doc/37963
ER -

References

top
  1. Allan, R. B., Laskar, R. C., Hedetniemi, S. T., 10.1016/0012-365X(84)90145-6, Discrete Math. 49 (1984), 7-13. (1984) Zbl0576.05028MR0737612DOI10.1016/0012-365X(84)90145-6
  2. Archdeacon, D., Ellis-Monaghan, J., Fisher, D., al., et, 10.1002/jgt.20000, Journal of Graph Theory 46 (2004), 207-210. (2004) Zbl1041.05057MR2063370DOI10.1002/jgt.20000
  3. Arumugam, S., Thuraiswamy, A., Total domination in graphs, Ars Combin. 43 (1996), 89-92. (1996) Zbl0881.05063MR1415977
  4. Cockayne, E. J., Dawes, R. M., Hedetniemi, S. T., 10.1002/net.3230100304, Networks 10 (1980), 211-219. (1980) Zbl0447.05039MR0584887DOI10.1002/net.3230100304
  5. Dunbar, J. E., Goddard, W., Hedetniemi, S. T., Henning, M. A., McRae, A. A., 10.1016/0166-218X(95)00056-W, Discrete Appl. Math. 68 (1996), 73-84. (1996) Zbl0848.05041MR1393310DOI10.1016/0166-218X(95)00056-W
  6. Dunbar, J. E., Hedetniemi, S. T., Henning, M. A., McRae, A. A., 10.1016/0012-365X(94)00329-H, Discrete Math. 149 (1996), 311-312. (1996) Zbl0843.05059MR1375119DOI10.1016/0012-365X(94)00329-H
  7. Dunbar, J. E., Hedetniemi, S. T., Henning, M. A., McRae, A. A., Minus domination in graphs, Discrete Math. 199 (1999), 35-47. (1999) Zbl0928.05046MR1675909
  8. Favaron, O., Henning, M. A., Mynhart, C. M., al., et, Total domination in graphs with minimum degree three, Journal of Graph Theory 32 (1999), 303-310. (1999) 
  9. Harris, L., Hattingh, J. H., The algorithmic complexity of certain functional variations of total domination in graphs, Australas. Journal of Combin. 29 (2004), 143-156. (2004) Zbl1084.05049MR2037343
  10. Haynes, T. W., Hedetniemi, S. T., Slater, P. J., Fundamentals of domination in graphs, New York, Marcel Dekker (1998). (1998) Zbl0890.05002MR1605684
  11. Henning, M. A., 10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F, Journal of Graph Theory 35 (2000), 21-45. (2000) Zbl0959.05089MR1775793DOI10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F
  12. Henning, M. A., 10.1016/j.disc.2003.06.002, Discrete Math. 278 (2004), 109-125. (2004) Zbl1036.05035MR2035392DOI10.1016/j.disc.2003.06.002
  13. Kang, L. Y., Kim, H. K., Sohn, M. Y., 10.1016/j.disc.2003.07.008, Discrete Math. 227 (2004), 295-300. (2004) Zbl1033.05077MR2033739DOI10.1016/j.disc.2003.07.008
  14. Xing, H. M., Sun, L., Chen, X. G., On signed total domination in graphs, Journal of Beijing Institute of Technology 12 (2003), 319-321. (2003) MR2007855
  15. Xing, H. M., Sun, L., Chen, X. G., On a generalization of signed total dominating functions of graphs, Ars Combin. 77 (2005), 205-215. (2005) Zbl1164.05426MR2180845
  16. Zelinka, B., 10.1023/A:1013782511179, Czech. Math. J. 51 (2001), 225-229. (2001) Zbl0977.05096MR1844306DOI10.1023/A:1013782511179

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.