Minus total domination in graphs
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 4, page 861-870
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXing, Hua Ming, and Liu, Hai-Long. "Minus total domination in graphs." Czechoslovak Mathematical Journal 59.4 (2009): 861-870. <http://eudml.org/doc/37963>.
@article{Xing2009,
abstract = {A three-valued function $f\: V\rightarrow \lbrace -1,0,1\rbrace $ defined on the vertices of a graph $G=(V,E)$ is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every $v\in V$, $f(N(v))\ge 1$, where $N(v)$ consists of every vertex adjacent to $v$. The weight of an MTDF is $f(V)=\sum f(v)$, over all vertices $v\in V$. The minus total domination number of a graph $G$, denoted $\gamma _t^\{-\}(G)$, equals the minimum weight of an MTDF of $G$. In this paper, we discuss some properties of minus total domination on a graph $G$ and obtain a few lower bounds for $\gamma _t^\{-\}(G)$.},
author = {Xing, Hua Ming, Liu, Hai-Long},
journal = {Czechoslovak Mathematical Journal},
keywords = {minus domination; total domination; minus total domination; minus domination; total domination; minus total domination},
language = {eng},
number = {4},
pages = {861-870},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Minus total domination in graphs},
url = {http://eudml.org/doc/37963},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Xing, Hua Ming
AU - Liu, Hai-Long
TI - Minus total domination in graphs
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 861
EP - 870
AB - A three-valued function $f\: V\rightarrow \lbrace -1,0,1\rbrace $ defined on the vertices of a graph $G=(V,E)$ is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every $v\in V$, $f(N(v))\ge 1$, where $N(v)$ consists of every vertex adjacent to $v$. The weight of an MTDF is $f(V)=\sum f(v)$, over all vertices $v\in V$. The minus total domination number of a graph $G$, denoted $\gamma _t^{-}(G)$, equals the minimum weight of an MTDF of $G$. In this paper, we discuss some properties of minus total domination on a graph $G$ and obtain a few lower bounds for $\gamma _t^{-}(G)$.
LA - eng
KW - minus domination; total domination; minus total domination; minus domination; total domination; minus total domination
UR - http://eudml.org/doc/37963
ER -
References
top- Allan, R. B., Laskar, R. C., Hedetniemi, S. T., 10.1016/0012-365X(84)90145-6, Discrete Math. 49 (1984), 7-13. (1984) Zbl0576.05028MR0737612DOI10.1016/0012-365X(84)90145-6
- Archdeacon, D., Ellis-Monaghan, J., Fisher, D., al., et, 10.1002/jgt.20000, Journal of Graph Theory 46 (2004), 207-210. (2004) Zbl1041.05057MR2063370DOI10.1002/jgt.20000
- Arumugam, S., Thuraiswamy, A., Total domination in graphs, Ars Combin. 43 (1996), 89-92. (1996) Zbl0881.05063MR1415977
- Cockayne, E. J., Dawes, R. M., Hedetniemi, S. T., 10.1002/net.3230100304, Networks 10 (1980), 211-219. (1980) Zbl0447.05039MR0584887DOI10.1002/net.3230100304
- Dunbar, J. E., Goddard, W., Hedetniemi, S. T., Henning, M. A., McRae, A. A., 10.1016/0166-218X(95)00056-W, Discrete Appl. Math. 68 (1996), 73-84. (1996) Zbl0848.05041MR1393310DOI10.1016/0166-218X(95)00056-W
- Dunbar, J. E., Hedetniemi, S. T., Henning, M. A., McRae, A. A., 10.1016/0012-365X(94)00329-H, Discrete Math. 149 (1996), 311-312. (1996) Zbl0843.05059MR1375119DOI10.1016/0012-365X(94)00329-H
- Dunbar, J. E., Hedetniemi, S. T., Henning, M. A., McRae, A. A., Minus domination in graphs, Discrete Math. 199 (1999), 35-47. (1999) Zbl0928.05046MR1675909
- Favaron, O., Henning, M. A., Mynhart, C. M., al., et, Total domination in graphs with minimum degree three, Journal of Graph Theory 32 (1999), 303-310. (1999)
- Harris, L., Hattingh, J. H., The algorithmic complexity of certain functional variations of total domination in graphs, Australas. Journal of Combin. 29 (2004), 143-156. (2004) Zbl1084.05049MR2037343
- Haynes, T. W., Hedetniemi, S. T., Slater, P. J., Fundamentals of domination in graphs, New York, Marcel Dekker (1998). (1998) Zbl0890.05002MR1605684
- Henning, M. A., 10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F, Journal of Graph Theory 35 (2000), 21-45. (2000) Zbl0959.05089MR1775793DOI10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F
- Henning, M. A., 10.1016/j.disc.2003.06.002, Discrete Math. 278 (2004), 109-125. (2004) Zbl1036.05035MR2035392DOI10.1016/j.disc.2003.06.002
- Kang, L. Y., Kim, H. K., Sohn, M. Y., 10.1016/j.disc.2003.07.008, Discrete Math. 227 (2004), 295-300. (2004) Zbl1033.05077MR2033739DOI10.1016/j.disc.2003.07.008
- Xing, H. M., Sun, L., Chen, X. G., On signed total domination in graphs, Journal of Beijing Institute of Technology 12 (2003), 319-321. (2003) MR2007855
- Xing, H. M., Sun, L., Chen, X. G., On a generalization of signed total dominating functions of graphs, Ars Combin. 77 (2005), 205-215. (2005) Zbl1164.05426MR2180845
- Zelinka, B., 10.1023/A:1013782511179, Czech. Math. J. 51 (2001), 225-229. (2001) Zbl0977.05096MR1844306DOI10.1023/A:1013782511179
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.