Existence of positive solutions for singular four-point boundary value problem with a p -Laplacian

Chunmei Miao; Junfang Zhao; Weigao Ge

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 957-973
  • ISSN: 0011-4642

Abstract

top
In this paper we deal with the four-point singular boundary value problem ( φ p ( u ' ( t ) ) ) ' + q ( t ) f ( t , u ( t ) , u ' ( t ) ) = 0 , t ( 0 , 1 ) , u ' ( 0 ) - α u ( ξ ) = 0 , u ' ( 1 ) + β u ( η ) = 0 , where φ p ( s ) = | s | p - 2 s , p > 1 , 0 < ξ < η < 1 , α , β > 0 , q C [ 0 , 1 ] , q ( t ) > 0 , t ( 0 , 1 ) , and f C ( [ 0 , 1 ] × ( 0 , + ) × , ( 0 , + ) ) may be singular at u = 0 . By using the well-known theory of the Leray-Schauder degree, sufficient conditions are given for the existence of positive solutions.

How to cite

top

Miao, Chunmei, Zhao, Junfang, and Ge, Weigao. "Existence of positive solutions for singular four-point boundary value problem with a $p$-Laplacian." Czechoslovak Mathematical Journal 59.4 (2009): 957-973. <http://eudml.org/doc/37969>.

@article{Miao2009,
abstract = {In this paper we deal with the four-point singular boundary value problem \[ \{\left\lbrace \begin\{array\}\{ll\} (\phi \_p(u^\{\prime \}(t)))^\{\prime \}+q(t)f(t,u(t),u^\{\prime \}(t))=0,& t\in (0,1),\\ u^\{\prime \}(0)-\alpha u(\xi )=0, \quad u^\{\prime \}(1)+\beta u(\eta )=0, \end\{array\}\right.\} \] where $\phi _p(s)=|s|^\{p-2\}s$, $p>1$, $0<\xi <\eta <1$, $\alpha ,\beta >0$, $q\in C[0,1]$, $q(t)>0$, $t\in (0,1)$, and $f\in C([0,1]\times (0,+\infty )\times \mathbb \{R\},(0,+\infty ))$ may be singular at $u = 0$. By using the well-known theory of the Leray-Schauder degree, sufficient conditions are given for the existence of positive solutions.},
author = {Miao, Chunmei, Zhao, Junfang, Ge, Weigao},
journal = {Czechoslovak Mathematical Journal},
keywords = {singular; four-point; positive solution; $p$-Laplacian; singular; four-point; positive solution; -Laplacian},
language = {eng},
number = {4},
pages = {957-973},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of positive solutions for singular four-point boundary value problem with a $p$-Laplacian},
url = {http://eudml.org/doc/37969},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Miao, Chunmei
AU - Zhao, Junfang
AU - Ge, Weigao
TI - Existence of positive solutions for singular four-point boundary value problem with a $p$-Laplacian
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 957
EP - 973
AB - In this paper we deal with the four-point singular boundary value problem \[ {\left\lbrace \begin{array}{ll} (\phi _p(u^{\prime }(t)))^{\prime }+q(t)f(t,u(t),u^{\prime }(t))=0,& t\in (0,1),\\ u^{\prime }(0)-\alpha u(\xi )=0, \quad u^{\prime }(1)+\beta u(\eta )=0, \end{array}\right.} \] where $\phi _p(s)=|s|^{p-2}s$, $p>1$, $0<\xi <\eta <1$, $\alpha ,\beta >0$, $q\in C[0,1]$, $q(t)>0$, $t\in (0,1)$, and $f\in C([0,1]\times (0,+\infty )\times \mathbb {R},(0,+\infty ))$ may be singular at $u = 0$. By using the well-known theory of the Leray-Schauder degree, sufficient conditions are given for the existence of positive solutions.
LA - eng
KW - singular; four-point; positive solution; $p$-Laplacian; singular; four-point; positive solution; -Laplacian
UR - http://eudml.org/doc/37969
ER -

References

top
  1. Agarwal, R. P., O'Regan, D., 10.1006/jdeq.1997.3353, J. Differ. Equations 143 (1998), 60-95. (1998) Zbl0902.34015MR1604959DOI10.1006/jdeq.1997.3353
  2. Agarwal, R. P., O'Regan, D., 10.1006/jdeq.2001.3975, J. Differ. Equations 175 (2001), 393-414. (2001) Zbl0999.34018MR1855974DOI10.1006/jdeq.2001.3975
  3. Agarwal, R. P., O'Regan, D., 10.1006/jmaa.1999.6597, J. Math. Anal. Appl. 240 (1999), 433-445. (1999) Zbl0946.34022MR1731655DOI10.1006/jmaa.1999.6597
  4. Jiang, D., Chu, J., Zhang, M., 10.1016/j.jde.2004.10.031, J. Differ. Equations 211 (2005), 282-302. (2005) Zbl1074.34048MR2125544DOI10.1016/j.jde.2004.10.031
  5. Ha, K., Lee, Y., 10.1016/0362-546X(95)00231-J, Nonlinear Anal. 28 (1997), 1429-1438. (1997) Zbl0874.34016MR1428660DOI10.1016/0362-546X(95)00231-J
  6. Khan, R. A., 10.1016/j.amc.2008.01.014, Appl. Math. Comput. 201 (2008), 762-773. (2008) Zbl1152.34016MR2431973DOI10.1016/j.amc.2008.01.014
  7. Lan, K., Webb, J. L., 10.1006/jdeq.1998.3475, J. Differ. Equations 148 (1998), 407-421. (1998) Zbl0909.34013MR1643199DOI10.1006/jdeq.1998.3475
  8. Liu, Y., Qi, A., 10.1016/S0898-1221(04)90055-7, Comput. Math. Appl. 47 (2004), 683-688. (2004) Zbl1070.34079MR2051339DOI10.1016/S0898-1221(04)90055-7
  9. Liu, B., Liu, L., Wu, Y., 10.1016/j.na.2006.04.005, Nonlinear Anal. 66 (2007), 2756-2766. (2007) Zbl1117.34021MR2311636DOI10.1016/j.na.2006.04.005
  10. Ma, D., Han, J., Chen, X., 10.1016/j.jmaa.2005.11.063, J. Math. Anal. Appl. 324 (2006), 118-133. (2006) Zbl1110.34016MR2262460DOI10.1016/j.jmaa.2005.11.063
  11. Ma, D., Ge, W., 10.1216/rmjm/1187453108, Rocky Mountain J. Math. 137 (2007), 1229-1249. (2007) Zbl1139.34018MR2360295DOI10.1216/rmjm/1187453108
  12. Ma, D., Ge, W., The existence of positive solution of multi-point boundary value problem for the one-dimensional p -Laplacian with singularities, Acta Mech. Sinica (Beijing) 48 (2005), 1079-1088. (2005) Zbl1124.34308MR2205048
  13. Rachůnková, I., Staněk, S., Tvrdý, M., Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations, In: Handbook of Differential Equations. Ordinary Differential Equations, Vol. 3 A. Cañada, P. Drábek, A. Fonda Elsevier (2006), 607-723. (2006) MR2457638
  14. Wei, Z., Pang, C., 10.1016/j.amc.2005.01.043, Appl. Math. Comput. 171 (2005), 433-449. (2005) Zbl1085.34017MR2192885DOI10.1016/j.amc.2005.01.043
  15. Xu, X., 10.1016/j.jmaa.2003.11.009, J. Math. Anal. Appl. 291 (2004), 352-367. (2004) Zbl1047.34016MR2034079DOI10.1016/j.jmaa.2003.11.009
  16. Zhang, X., Liu, L., 10.1016/j.camwa.2007.08.048, Comput. Math. Appl. 56 (2008), 172-185. (2008) Zbl1145.34315MR2427696DOI10.1016/j.camwa.2007.08.048
  17. Zhang, X., Liu, L., 10.1016/j.jmaa.2007.03.015, J. Math. Anal. Appl. 336 (2007), 1414-1423. (2007) Zbl1125.34018MR2353024DOI10.1016/j.jmaa.2007.03.015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.