Existence of positive solutions for singular four-point boundary value problem with a -Laplacian
Chunmei Miao; Junfang Zhao; Weigao Ge
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 4, page 957-973
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMiao, Chunmei, Zhao, Junfang, and Ge, Weigao. "Existence of positive solutions for singular four-point boundary value problem with a $p$-Laplacian." Czechoslovak Mathematical Journal 59.4 (2009): 957-973. <http://eudml.org/doc/37969>.
@article{Miao2009,
abstract = {In this paper we deal with the four-point singular boundary value problem \[ \{\left\lbrace \begin\{array\}\{ll\} (\phi \_p(u^\{\prime \}(t)))^\{\prime \}+q(t)f(t,u(t),u^\{\prime \}(t))=0,& t\in (0,1),\\ u^\{\prime \}(0)-\alpha u(\xi )=0, \quad u^\{\prime \}(1)+\beta u(\eta )=0, \end\{array\}\right.\} \]
where $\phi _p(s)=|s|^\{p-2\}s$, $p>1$, $0<\xi <\eta <1$, $\alpha ,\beta >0$, $q\in C[0,1]$, $q(t)>0$, $t\in (0,1)$, and $f\in C([0,1]\times (0,+\infty )\times \mathbb \{R\},(0,+\infty ))$ may be singular at $u = 0$. By using the well-known theory of the Leray-Schauder degree, sufficient conditions are given for the existence of positive solutions.},
author = {Miao, Chunmei, Zhao, Junfang, Ge, Weigao},
journal = {Czechoslovak Mathematical Journal},
keywords = {singular; four-point; positive solution; $p$-Laplacian; singular; four-point; positive solution; -Laplacian},
language = {eng},
number = {4},
pages = {957-973},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of positive solutions for singular four-point boundary value problem with a $p$-Laplacian},
url = {http://eudml.org/doc/37969},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Miao, Chunmei
AU - Zhao, Junfang
AU - Ge, Weigao
TI - Existence of positive solutions for singular four-point boundary value problem with a $p$-Laplacian
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 957
EP - 973
AB - In this paper we deal with the four-point singular boundary value problem \[ {\left\lbrace \begin{array}{ll} (\phi _p(u^{\prime }(t)))^{\prime }+q(t)f(t,u(t),u^{\prime }(t))=0,& t\in (0,1),\\ u^{\prime }(0)-\alpha u(\xi )=0, \quad u^{\prime }(1)+\beta u(\eta )=0, \end{array}\right.} \]
where $\phi _p(s)=|s|^{p-2}s$, $p>1$, $0<\xi <\eta <1$, $\alpha ,\beta >0$, $q\in C[0,1]$, $q(t)>0$, $t\in (0,1)$, and $f\in C([0,1]\times (0,+\infty )\times \mathbb {R},(0,+\infty ))$ may be singular at $u = 0$. By using the well-known theory of the Leray-Schauder degree, sufficient conditions are given for the existence of positive solutions.
LA - eng
KW - singular; four-point; positive solution; $p$-Laplacian; singular; four-point; positive solution; -Laplacian
UR - http://eudml.org/doc/37969
ER -
References
top- Agarwal, R. P., O'Regan, D., 10.1006/jdeq.1997.3353, J. Differ. Equations 143 (1998), 60-95. (1998) Zbl0902.34015MR1604959DOI10.1006/jdeq.1997.3353
- Agarwal, R. P., O'Regan, D., 10.1006/jdeq.2001.3975, J. Differ. Equations 175 (2001), 393-414. (2001) Zbl0999.34018MR1855974DOI10.1006/jdeq.2001.3975
- Agarwal, R. P., O'Regan, D., 10.1006/jmaa.1999.6597, J. Math. Anal. Appl. 240 (1999), 433-445. (1999) Zbl0946.34022MR1731655DOI10.1006/jmaa.1999.6597
- Jiang, D., Chu, J., Zhang, M., 10.1016/j.jde.2004.10.031, J. Differ. Equations 211 (2005), 282-302. (2005) Zbl1074.34048MR2125544DOI10.1016/j.jde.2004.10.031
- Ha, K., Lee, Y., 10.1016/0362-546X(95)00231-J, Nonlinear Anal. 28 (1997), 1429-1438. (1997) Zbl0874.34016MR1428660DOI10.1016/0362-546X(95)00231-J
- Khan, R. A., 10.1016/j.amc.2008.01.014, Appl. Math. Comput. 201 (2008), 762-773. (2008) Zbl1152.34016MR2431973DOI10.1016/j.amc.2008.01.014
- Lan, K., Webb, J. L., 10.1006/jdeq.1998.3475, J. Differ. Equations 148 (1998), 407-421. (1998) Zbl0909.34013MR1643199DOI10.1006/jdeq.1998.3475
- Liu, Y., Qi, A., 10.1016/S0898-1221(04)90055-7, Comput. Math. Appl. 47 (2004), 683-688. (2004) Zbl1070.34079MR2051339DOI10.1016/S0898-1221(04)90055-7
- Liu, B., Liu, L., Wu, Y., 10.1016/j.na.2006.04.005, Nonlinear Anal. 66 (2007), 2756-2766. (2007) Zbl1117.34021MR2311636DOI10.1016/j.na.2006.04.005
- Ma, D., Han, J., Chen, X., 10.1016/j.jmaa.2005.11.063, J. Math. Anal. Appl. 324 (2006), 118-133. (2006) Zbl1110.34016MR2262460DOI10.1016/j.jmaa.2005.11.063
- Ma, D., Ge, W., 10.1216/rmjm/1187453108, Rocky Mountain J. Math. 137 (2007), 1229-1249. (2007) Zbl1139.34018MR2360295DOI10.1216/rmjm/1187453108
- Ma, D., Ge, W., The existence of positive solution of multi-point boundary value problem for the one-dimensional -Laplacian with singularities, Acta Mech. Sinica (Beijing) 48 (2005), 1079-1088. (2005) Zbl1124.34308MR2205048
- Rachůnková, I., Staněk, S., Tvrdý, M., Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations, In: Handbook of Differential Equations. Ordinary Differential Equations, Vol. 3 A. Cañada, P. Drábek, A. Fonda Elsevier (2006), 607-723. (2006) MR2457638
- Wei, Z., Pang, C., 10.1016/j.amc.2005.01.043, Appl. Math. Comput. 171 (2005), 433-449. (2005) Zbl1085.34017MR2192885DOI10.1016/j.amc.2005.01.043
- Xu, X., 10.1016/j.jmaa.2003.11.009, J. Math. Anal. Appl. 291 (2004), 352-367. (2004) Zbl1047.34016MR2034079DOI10.1016/j.jmaa.2003.11.009
- Zhang, X., Liu, L., 10.1016/j.camwa.2007.08.048, Comput. Math. Appl. 56 (2008), 172-185. (2008) Zbl1145.34315MR2427696DOI10.1016/j.camwa.2007.08.048
- Zhang, X., Liu, L., 10.1016/j.jmaa.2007.03.015, J. Math. Anal. Appl. 336 (2007), 1414-1423. (2007) Zbl1125.34018MR2353024DOI10.1016/j.jmaa.2007.03.015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.