Matlis reflexive and generalized local cohomology modules
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 4, page 1095-1102
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMafi, Amir. "Matlis reflexive and generalized local cohomology modules." Czechoslovak Mathematical Journal 59.4 (2009): 1095-1102. <http://eudml.org/doc/37980>.
@article{Mafi2009,
abstract = {Let $(R,\mathfrak \{m\} )$ be a complete local ring, $\mathfrak \{a\} $ an ideal of $R$ and $N$ and $L$ two Matlis reflexive $R$-modules with $\mathop \{\{\rm Supp\}\} (L)\subseteq V(\mathfrak \{a\} )$. We prove that if $M$ is a finitely generated $R$-module, then $\mathop \{\{\rm Ext\}\}\nolimits _R^i(L,H_\{\mathfrak \{a\} \}^j(M,N))$ is Matlis reflexive for all $i$ and $j$ in the following cases: (a) $\mathop \{\{\rm dim\}\} R/\{\mathfrak \{a\} \}=1$; (b) $\mathop \{\{\rm cd\}\} (\mathfrak \{a\} )=1$; where $\mathop \{\{\rm cd\}\} $ is the cohomological dimension of $\mathfrak \{a\} $ in $R$; (c) $\mathop \{\{\rm dim\}\} R\le 2$. In these cases we also prove that the Bass numbers of $H_\{\mathfrak \{a\} \}^j(M,N)$ are finite.},
author = {Mafi, Amir},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bass numbers; generalized local cohomology modules; Matlis reflexive; Bass number; generalized local cohomology module; Matlis reflexive},
language = {eng},
number = {4},
pages = {1095-1102},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Matlis reflexive and generalized local cohomology modules},
url = {http://eudml.org/doc/37980},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Mafi, Amir
TI - Matlis reflexive and generalized local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 1095
EP - 1102
AB - Let $(R,\mathfrak {m} )$ be a complete local ring, $\mathfrak {a} $ an ideal of $R$ and $N$ and $L$ two Matlis reflexive $R$-modules with $\mathop {{\rm Supp}} (L)\subseteq V(\mathfrak {a} )$. We prove that if $M$ is a finitely generated $R$-module, then $\mathop {{\rm Ext}}\nolimits _R^i(L,H_{\mathfrak {a} }^j(M,N))$ is Matlis reflexive for all $i$ and $j$ in the following cases: (a) $\mathop {{\rm dim}} R/{\mathfrak {a} }=1$; (b) $\mathop {{\rm cd}} (\mathfrak {a} )=1$; where $\mathop {{\rm cd}} $ is the cohomological dimension of $\mathfrak {a} $ in $R$; (c) $\mathop {{\rm dim}} R\le 2$. In these cases we also prove that the Bass numbers of $H_{\mathfrak {a} }^j(M,N)$ are finite.
LA - eng
KW - Bass numbers; generalized local cohomology modules; Matlis reflexive; Bass number; generalized local cohomology module; Matlis reflexive
UR - http://eudml.org/doc/37980
ER -
References
top- Brodmann, M. P., Sharp, R. Y., Local Cohomology. An Algebraic Introduction with Geometric Applications, Cambridge University Press Cambridge (1998). (1998) Zbl0903.13006MR1613627
- Belshoff, R., Slattery, S. P., Wickham, C., 10.1080/00927879608825640, Commun. Algebra 24 (1996), 1371-1376. (1996) Zbl0873.13012MR1380599DOI10.1080/00927879608825640
- Belshoff, R., Slattery, S. P., Wickham, C., 10.1090/S0002-9939-96-03326-6, Proc. Am. Math. Soc. 124 (1996), 2649-2654. (1996) Zbl0863.13005MR1326995DOI10.1090/S0002-9939-96-03326-6
- Belshoff, R., Wickham, C., 10.1112/S0024609396001713, Bull. Lond. Math. Soc. 29 (1997), 25-31. (1997) Zbl0891.13005MR1416402DOI10.1112/S0024609396001713
- Delfino, D., 10.1017/S0305004100071929, Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. (1994) Zbl0806.13005MR1253283DOI10.1017/S0305004100071929
- Delfino, D., Marley, T., 10.1016/S0022-4049(96)00044-8, J. Pure Appl. Algebra 121 (1997), 45-52. (1997) Zbl0893.13005MR1471123DOI10.1016/S0022-4049(96)00044-8
- Divaani-Aazar, K., Sazeedeh, R., 10.4064/cm99-2-12, Colloq. Math. 99 (2004), 283-290. (2004) Zbl1072.13011MR2079733DOI10.4064/cm99-2-12
- Divaani-Aazar, K., Sazeedeh, R., Tousi, M., 10.1142/S1005386705000209, Algebra Colloq. 12 (2005), 213-218. (2005) Zbl1065.13007MR2127246DOI10.1142/S1005386705000209
- Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
- Herzog, J., Komplexe Auflösungen und Dualitat in der lokalen Algebra, Habilitationsschrift Universität Regensburg Regensburg (1970), German. (1970)
- Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
- Kawakami, S., Kawasaki, K.-I., On the finiteness of Bass numbers of generalized local cohomology modules, Toyama Math. J. 29 (2006), 59-64. (2006) Zbl1141.13307MR2333640
- Kawasaki, K.-I., 10.1112/S0024609397004347, Bull. Lond. Math. Soc. 30 (1998), 241-246. (1998) Zbl0930.13013MR1608094DOI10.1112/S0024609397004347
- Khashyarmanesh, K., Khosh-Ahang, F., 10.1080/00927870701724102, Commun. Algebra 36 (2008), 665-669. (2008) Zbl1133.13018MR2388029DOI10.1080/00927870701724102
- Mafi, A., 10.1007/s12044-009-0016-1, Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009), 159-164. (2009) Zbl1171.13011MR2526419DOI10.1007/s12044-009-0016-1
- Mafi, A., Saremi, H., Cofinite modules and generalized local cohomology, Houston J. Math (to appear). Zbl1185.13019MR2577138
- Melkersson, L., 10.1017/S0305004198003041, Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. (1999) Zbl0921.13009MR1656785DOI10.1017/S0305004198003041
- Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
- Ooishi, A., 10.32917/hmj/1206136213, Hiroshima Math. J. 6 (1976), 573-587. (1976) MR0422243DOI10.32917/hmj/1206136213
- Strooker, J., Homological Questions in Local Algebra. Lecture Notes Series 145, Cambridge University Press Cambridge (1990). (1990) MR1074178
- Yassemi, S., 10.1016/0022-4049(94)90121-X, J. Pure Appl. Algebra 95 (1994), 103-119. (1994) Zbl0843.13005MR1289122DOI10.1016/0022-4049(94)90121-X
- Yoshida, K. I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.