Matlis reflexive and generalized local cohomology modules

Amir Mafi

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 1095-1102
  • ISSN: 0011-4642

Abstract

top
Let ( R , 𝔪 ) be a complete local ring, 𝔞 an ideal of R and N and L two Matlis reflexive R -modules with Supp ( L ) V ( 𝔞 ) . We prove that if M is a finitely generated R -module, then Ext R i ( L , H 𝔞 j ( M , N ) ) is Matlis reflexive for all i and j in the following cases: (a) dim R / 𝔞 = 1 ; (b) cd ( 𝔞 ) = 1 ; where cd is the cohomological dimension of 𝔞 in R ; (c) dim R 2 . In these cases we also prove that the Bass numbers of H 𝔞 j ( M , N ) are finite.

How to cite

top

Mafi, Amir. "Matlis reflexive and generalized local cohomology modules." Czechoslovak Mathematical Journal 59.4 (2009): 1095-1102. <http://eudml.org/doc/37980>.

@article{Mafi2009,
abstract = {Let $(R,\mathfrak \{m\} )$ be a complete local ring, $\mathfrak \{a\} $ an ideal of $R$ and $N$ and $L$ two Matlis reflexive $R$-modules with $\mathop \{\{\rm Supp\}\} (L)\subseteq V(\mathfrak \{a\} )$. We prove that if $M$ is a finitely generated $R$-module, then $\mathop \{\{\rm Ext\}\}\nolimits _R^i(L,H_\{\mathfrak \{a\} \}^j(M,N))$ is Matlis reflexive for all $i$ and $j$ in the following cases: (a) $\mathop \{\{\rm dim\}\} R/\{\mathfrak \{a\} \}=1$; (b) $\mathop \{\{\rm cd\}\} (\mathfrak \{a\} )=1$; where $\mathop \{\{\rm cd\}\} $ is the cohomological dimension of $\mathfrak \{a\} $ in $R$; (c) $\mathop \{\{\rm dim\}\} R\le 2$. In these cases we also prove that the Bass numbers of $H_\{\mathfrak \{a\} \}^j(M,N)$ are finite.},
author = {Mafi, Amir},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bass numbers; generalized local cohomology modules; Matlis reflexive; Bass number; generalized local cohomology module; Matlis reflexive},
language = {eng},
number = {4},
pages = {1095-1102},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Matlis reflexive and generalized local cohomology modules},
url = {http://eudml.org/doc/37980},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Mafi, Amir
TI - Matlis reflexive and generalized local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 1095
EP - 1102
AB - Let $(R,\mathfrak {m} )$ be a complete local ring, $\mathfrak {a} $ an ideal of $R$ and $N$ and $L$ two Matlis reflexive $R$-modules with $\mathop {{\rm Supp}} (L)\subseteq V(\mathfrak {a} )$. We prove that if $M$ is a finitely generated $R$-module, then $\mathop {{\rm Ext}}\nolimits _R^i(L,H_{\mathfrak {a} }^j(M,N))$ is Matlis reflexive for all $i$ and $j$ in the following cases: (a) $\mathop {{\rm dim}} R/{\mathfrak {a} }=1$; (b) $\mathop {{\rm cd}} (\mathfrak {a} )=1$; where $\mathop {{\rm cd}} $ is the cohomological dimension of $\mathfrak {a} $ in $R$; (c) $\mathop {{\rm dim}} R\le 2$. In these cases we also prove that the Bass numbers of $H_{\mathfrak {a} }^j(M,N)$ are finite.
LA - eng
KW - Bass numbers; generalized local cohomology modules; Matlis reflexive; Bass number; generalized local cohomology module; Matlis reflexive
UR - http://eudml.org/doc/37980
ER -

References

top
  1. Brodmann, M. P., Sharp, R. Y., Local Cohomology. An Algebraic Introduction with Geometric Applications, Cambridge University Press Cambridge (1998). (1998) Zbl0903.13006MR1613627
  2. Belshoff, R., Slattery, S. P., Wickham, C., 10.1080/00927879608825640, Commun. Algebra 24 (1996), 1371-1376. (1996) Zbl0873.13012MR1380599DOI10.1080/00927879608825640
  3. Belshoff, R., Slattery, S. P., Wickham, C., 10.1090/S0002-9939-96-03326-6, Proc. Am. Math. Soc. 124 (1996), 2649-2654. (1996) Zbl0863.13005MR1326995DOI10.1090/S0002-9939-96-03326-6
  4. Belshoff, R., Wickham, C., 10.1112/S0024609396001713, Bull. Lond. Math. Soc. 29 (1997), 25-31. (1997) Zbl0891.13005MR1416402DOI10.1112/S0024609396001713
  5. Delfino, D., 10.1017/S0305004100071929, Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. (1994) Zbl0806.13005MR1253283DOI10.1017/S0305004100071929
  6. Delfino, D., Marley, T., 10.1016/S0022-4049(96)00044-8, J. Pure Appl. Algebra 121 (1997), 45-52. (1997) Zbl0893.13005MR1471123DOI10.1016/S0022-4049(96)00044-8
  7. Divaani-Aazar, K., Sazeedeh, R., 10.4064/cm99-2-12, Colloq. Math. 99 (2004), 283-290. (2004) Zbl1072.13011MR2079733DOI10.4064/cm99-2-12
  8. Divaani-Aazar, K., Sazeedeh, R., Tousi, M., 10.1142/S1005386705000209, Algebra Colloq. 12 (2005), 213-218. (2005) Zbl1065.13007MR2127246DOI10.1142/S1005386705000209
  9. Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
  10. Herzog, J., Komplexe Auflösungen und Dualitat in der lokalen Algebra, Habilitationsschrift Universität Regensburg Regensburg (1970), German. (1970) 
  11. Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
  12. Kawakami, S., Kawasaki, K.-I., On the finiteness of Bass numbers of generalized local cohomology modules, Toyama Math. J. 29 (2006), 59-64. (2006) Zbl1141.13307MR2333640
  13. Kawasaki, K.-I., 10.1112/S0024609397004347, Bull. Lond. Math. Soc. 30 (1998), 241-246. (1998) Zbl0930.13013MR1608094DOI10.1112/S0024609397004347
  14. Khashyarmanesh, K., Khosh-Ahang, F., 10.1080/00927870701724102, Commun. Algebra 36 (2008), 665-669. (2008) Zbl1133.13018MR2388029DOI10.1080/00927870701724102
  15. Mafi, A., 10.1007/s12044-009-0016-1, Proc. Indian Acad. Sci. (Math. Sci.) 119 (2009), 159-164. (2009) Zbl1171.13011MR2526419DOI10.1007/s12044-009-0016-1
  16. Mafi, A., Saremi, H., Cofinite modules and generalized local cohomology, Houston J. Math (to appear). Zbl1185.13019MR2577138
  17. Melkersson, L., 10.1017/S0305004198003041, Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. (1999) Zbl0921.13009MR1656785DOI10.1017/S0305004198003041
  18. Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
  19. Ooishi, A., 10.32917/hmj/1206136213, Hiroshima Math. J. 6 (1976), 573-587. (1976) MR0422243DOI10.32917/hmj/1206136213
  20. Strooker, J., Homological Questions in Local Algebra. Lecture Notes Series 145, Cambridge University Press Cambridge (1990). (1990) MR1074178
  21. Yassemi, S., 10.1016/0022-4049(94)90121-X, J. Pure Appl. Algebra 95 (1994), 103-119. (1994) Zbl0843.13005MR1289122DOI10.1016/0022-4049(94)90121-X
  22. Yoshida, K. I., 10.1017/S0027763000006371, Nagoya Math. J. 147 (1997), 179-191. (1997) Zbl0899.13018MR1475172DOI10.1017/S0027763000006371

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.