A bound on the -domination number of a graph
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 1, page 77-83
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topVolkmann, Lutz. "A bound on the $k$-domination number of a graph." Czechoslovak Mathematical Journal 60.1 (2010): 77-83. <http://eudml.org/doc/37989>.
@article{Volkmann2010,
abstract = {Let $G$ be a graph with vertex set $V(G)$, and let $k\ge 1$ be an integer. A subset $D \subseteq V(G)$ is called a $k$-dominating set if every vertex $v\in V(G)-D$ has at least $k$ neighbors in $D$. The $k$-domination number $\gamma _k(G)$ of $G$ is the minimum cardinality of a $k$-dominating set in $G$. If $G$ is a graph with minimum degree $\delta (G)\ge k+1$, then we prove that \[\gamma \_\{k+1\}(G)\le \frac\{|V(G)|+\gamma \_k(G)\}\{2\}.\]
In addition, we present a characterization of a special class of graphs attaining equality in this inequality.},
author = {Volkmann, Lutz},
journal = {Czechoslovak Mathematical Journal},
keywords = {domination; $k$-domination number; $P_4$-free graphs; domination; -domination number; -free graph},
language = {eng},
number = {1},
pages = {77-83},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A bound on the $k$-domination number of a graph},
url = {http://eudml.org/doc/37989},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Volkmann, Lutz
TI - A bound on the $k$-domination number of a graph
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 77
EP - 83
AB - Let $G$ be a graph with vertex set $V(G)$, and let $k\ge 1$ be an integer. A subset $D \subseteq V(G)$ is called a $k$-dominating set if every vertex $v\in V(G)-D$ has at least $k$ neighbors in $D$. The $k$-domination number $\gamma _k(G)$ of $G$ is the minimum cardinality of a $k$-dominating set in $G$. If $G$ is a graph with minimum degree $\delta (G)\ge k+1$, then we prove that \[\gamma _{k+1}(G)\le \frac{|V(G)|+\gamma _k(G)}{2}.\]
In addition, we present a characterization of a special class of graphs attaining equality in this inequality.
LA - eng
KW - domination; $k$-domination number; $P_4$-free graphs; domination; -domination number; -free graph
UR - http://eudml.org/doc/37989
ER -
References
top- Blidia, M., Chellali, M., Volkmann, L., Bounds of the 2-domination number of graphs, Utilitas Math. 71 (2006), 209-216. (2006) Zbl1113.05072MR2278833
- Caro, Y., Roditty, Y., 10.1155/S016117129000031X, Int. J. Math. Sci. 13 (1990), 205-206. (1990) Zbl0706.05033MR1038667DOI10.1155/S016117129000031X
- Chen, B., Zhou, S., 10.1016/S0012-365X(97)00204-5, Discrete Math. 185 (1998), 239-243. (1998) Zbl0955.05077MR1614254DOI10.1016/S0012-365X(97)00204-5
- Cockayne, E. J., Gamble, B., Shepherd, B., 10.1002/jgt.3190090414, J. Graph Theory 9 (1985), 533-534. (1985) Zbl0664.05053MR0890244DOI10.1002/jgt.3190090414
- Favaron, O., Hansberg, A., Volkmann, L., 10.1002/jgt.20279, J. Graph Theory 57 (2008), 33-40. (2008) MR2370182DOI10.1002/jgt.20279
- Fink, J. F., Jacobson, M. S., -domination in graphs, Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York (1985), 283-300. (1985) Zbl0573.05049MR0812671
- Fink, J. F., Jacobson, M. S., On -domination, -dependence and forbidden subgraphs, Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York (1985), 301-311. (1985) Zbl0573.05050MR0812672
- Fink, J. F., Jacobson, M. S., Kinch, L. F., Roberts, J., 10.1007/BF01848079, Period. Math. Hungar. 16 (1985), 287-293. (1985) Zbl0602.05043MR0833264DOI10.1007/BF01848079
- Hansberg, A., Volkmann, L., 10.1016/j.dam.2008.10.011, Discrete Appl. Math. 157 (2009), 1634-1639. (2009) Zbl1179.05081MR2510244DOI10.1016/j.dam.2008.10.011
- Ore, O., Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38 (1962). (1962) Zbl0105.35401MR0150753
- Payan, C., Xuong, N. H., 10.1002/jgt.3190060104, J. Graph Theory 6 (1982), 23-32. (1982) Zbl0489.05049MR0644738DOI10.1002/jgt.3190060104
- Stracke, C., Volkmann, L., 10.1002/jgt.3190170306, J. Graph Theory 17 (1993), 315-323. (1993) Zbl0777.05074MR1220992DOI10.1002/jgt.3190170306
- Zhou, S., On -domination number of a graph, Czech. Math. J. 46 (1996), 489-499. (1996) Zbl0879.05037MR1408300
- Zhou, S., 10.1023/A:1022470802343, Czech. Math. J. 50 (2000), 321-330. (2000) MR1761389DOI10.1023/A:1022470802343
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.