On the diameter of the Banach-Mazur set

Gilles Godefroy

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 1, page 95-100
  • ISSN: 0011-4642

Abstract

top
On every subspace of l ( ) which contains an uncountable ω -independent set, we construct equivalent norms whose Banach-Mazur distance is as large as required. Under Martin’s Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of equivalent norms on every infinite-dimensional subspace of l ( ) is infinite. This provides a partial answer to a question asked by Johnson and Odell.

How to cite

top

Godefroy, Gilles. "On the diameter of the Banach-Mazur set." Czechoslovak Mathematical Journal 60.1 (2010): 95-100. <http://eudml.org/doc/37991>.

@article{Godefroy2010,
abstract = {On every subspace of $l_\{\infty \}(\mathbb \{N\})$ which contains an uncountable $\omega $-independent set, we construct equivalent norms whose Banach-Mazur distance is as large as required. Under Martin’s Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of equivalent norms on every infinite-dimensional subspace of $l_\{\infty \}(\mathbb \{N\})$ is infinite. This provides a partial answer to a question asked by Johnson and Odell.},
author = {Godefroy, Gilles},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach-Mazur diameter; elastic Banach spaces; Martin's Maximum axiom; Banach-Mazur diameter; elastic Banach space; Martin's maximum axiom},
language = {eng},
number = {1},
pages = {95-100},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the diameter of the Banach-Mazur set},
url = {http://eudml.org/doc/37991},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Godefroy, Gilles
TI - On the diameter of the Banach-Mazur set
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 95
EP - 100
AB - On every subspace of $l_{\infty }(\mathbb {N})$ which contains an uncountable $\omega $-independent set, we construct equivalent norms whose Banach-Mazur distance is as large as required. Under Martin’s Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of equivalent norms on every infinite-dimensional subspace of $l_{\infty }(\mathbb {N})$ is infinite. This provides a partial answer to a question asked by Johnson and Odell.
LA - eng
KW - Banach-Mazur diameter; elastic Banach spaces; Martin's Maximum axiom; Banach-Mazur diameter; elastic Banach space; Martin's maximum axiom
UR - http://eudml.org/doc/37991
ER -

References

top
  1. Bačák, M., Hájek, P., 10.1016/j.jfa.2008.05.016, J. Funct. Anal. 255 (2008), 2090-2094. (2008) MR2462587DOI10.1016/j.jfa.2008.05.016
  2. Finet, C., Godefroy, G., 10.1090/conm/085/983383, Contemp. Math. 85 (1989), 87-110. (1989) Zbl0684.46016MR0983383DOI10.1090/conm/085/983383
  3. Foreman, M., Magidor, M., Shelah, S., 10.2307/1971415, Ann. Math. 127 (1988), 1-47. (1988) Zbl0645.03028MR0924672DOI10.2307/1971415
  4. Fremlin, D. H., Sersouri, A., 10.1093/qmath/39.3.323, Q. J. Math. 39 (1988), 323-331. (1988) Zbl0662.46018MR0957274DOI10.1093/qmath/39.3.323
  5. Godefroy, G., Louveau, A., 10.1007/BF02764903, Isr. J. Math. 67 (1989), 109-116. (1989) Zbl0712.46004MR1021365DOI10.1007/BF02764903
  6. Godefroy, G., Talagrand, M., 10.1007/BF02760538, Isr. J. Math. 41 (1982), 321-330. (1982) Zbl0498.46016MR0657864DOI10.1007/BF02760538
  7. Granero, A. S., Jimenez-Sevilla, M., Montesinos, A., Moreno, J. P., Plichko, A. N., 10.4064/sm157-2-1, Stud. Math. 157 (2003), 97-120. (2003) MR1980708DOI10.4064/sm157-2-1
  8. Hájek, P., Santalucia, V. Montesinos, Vanderwerff, J., Zízler, V., Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics, Springer New York (2008). (2008) MR2359536
  9. Jimenéz-Sevilla, M., Moreno, J. P., 10.1006/jfan.1996.3014, J. Funct. Anal. 144 (1997), 486-504. (1997) MR1432595DOI10.1006/jfan.1996.3014
  10. Johnson, W. B., Odell, E., 10.4007/annals.2005.162.423, Ann. Math. 162 (2005), 423-437. (2005) Zbl1098.46011MR2178965DOI10.4007/annals.2005.162.423
  11. Kalton, N. J., 10.1090/conm/085/983390, Contemp. Math. 85 (1989), 319-323. (1989) Zbl0678.46011MR0983390DOI10.1090/conm/085/983390
  12. Negrepontis, S., Banach Spaces and Topology. Handbook of Set-Theoretic Topology, K. Kunen, J. E. Vaughan North-Holland Amsterdam (1984), 1045-1142. (1984) MR0776642
  13. Todorcevic, S., 10.1007/s00208-006-0762-7, Math. Ann. 335 (2006), 687-715. (2006) Zbl1112.46015MR2221128DOI10.1007/s00208-006-0762-7
  14. Todorcevic, S., 10.1007/s00208-006-0762-7, Math. Ann. 335 (2006), 687-715. (2006) Zbl1112.46015MR2221128DOI10.1007/s00208-006-0762-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.