Global structure of positive solutions for superlinear 2 m th-boundary value problems

Ruyun Ma; Yulian An

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 1, page 161-172
  • ISSN: 0011-4642

Abstract

top
We consider boundary value problems for nonlinear 2 m th-order eigenvalue problem ( - 1 ) m u ( 2 m ) ( t ) = λ a ( t ) f ( u ( t ) ) , 0 < t < 1 , u ( 2 i ) ( 0 ) = u ( 2 i ) ( 1 ) = 0 , i = 0 , 1 , 2 , , m - 1 . where a C ( [ 0 , 1 ] , [ 0 , ) ) and a ( t 0 ) > 0 for some t 0 [ 0 , 1 ] , f C ( [ 0 , ) , [ 0 , ) ) and f ( s ) > 0 for s > 0 , and f 0 = , where f 0 = lim s 0 + f ( s ) / s . We investigate the global structure of positive solutions by using Rabinowitz’s global bifurcation theorem.

How to cite

top

Ma, Ruyun, and An, Yulian. "Global structure of positive solutions for superlinear $2m$th-boundary value problems." Czechoslovak Mathematical Journal 60.1 (2010): 161-172. <http://eudml.org/doc/37998>.

@article{Ma2010,
abstract = {We consider boundary value problems for nonlinear $2m$th-order eigenvalue problem \[ \begin\{aligned\} (-1)^mu^\{(2m)\}(t)&=\lambda a(t)f(u(t)),\ \ \ \ \ 0<t<1, \\ u^\{(2i)\}(0)&=u^\{(2i)\}(1)=0,\ \ \ \ i=0,1,2,\cdots ,m-1 . \end\{aligned\} \] where $a\in C([0,1], [0,\infty ))$ and $a(t_0)>0$ for some $t_0\in [0,1]$, $f\in C([0,\infty ),[0,\infty ))$ and $f(s)>0$ for $s>0$, and $f_0=\infty $, where $f_0=\lim _\{s\rightarrow 0^+\}f(s)/s$. We investigate the global structure of positive solutions by using Rabinowitz’s global bifurcation theorem.},
author = {Ma, Ruyun, An, Yulian},
journal = {Czechoslovak Mathematical Journal},
keywords = {multiplicity results; Lidstone boundary value problem; eigenvalues; bifurcation methods; positive solutions; multiplicity; Lidstone boundary value problem; eigenvalue; bifurcation method; positive solution},
language = {eng},
number = {1},
pages = {161-172},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global structure of positive solutions for superlinear $2m$th-boundary value problems},
url = {http://eudml.org/doc/37998},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Ma, Ruyun
AU - An, Yulian
TI - Global structure of positive solutions for superlinear $2m$th-boundary value problems
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 161
EP - 172
AB - We consider boundary value problems for nonlinear $2m$th-order eigenvalue problem \[ \begin{aligned} (-1)^mu^{(2m)}(t)&=\lambda a(t)f(u(t)),\ \ \ \ \ 0<t<1, \\ u^{(2i)}(0)&=u^{(2i)}(1)=0,\ \ \ \ i=0,1,2,\cdots ,m-1 . \end{aligned} \] where $a\in C([0,1], [0,\infty ))$ and $a(t_0)>0$ for some $t_0\in [0,1]$, $f\in C([0,\infty ),[0,\infty ))$ and $f(s)>0$ for $s>0$, and $f_0=\infty $, where $f_0=\lim _{s\rightarrow 0^+}f(s)/s$. We investigate the global structure of positive solutions by using Rabinowitz’s global bifurcation theorem.
LA - eng
KW - multiplicity results; Lidstone boundary value problem; eigenvalues; bifurcation methods; positive solutions; multiplicity; Lidstone boundary value problem; eigenvalue; bifurcation method; positive solution
UR - http://eudml.org/doc/37998
ER -

References

top
  1. Gupta, C. P., 10.1080/00036818808839715, Appl. Anal. 26 (1988), 289-304. (1988) Zbl0611.34015MR0922976DOI10.1080/00036818808839715
  2. Agarwal, R. P., Boundary Value Problems for Higher Order Differential Equations, World Scientific, Singapore (1986). (1986) Zbl0619.34019MR1021979
  3. Agarwal, R. P., Wong, P. J. Y., 10.1016/0898-1221(89)90023-0, Comput. Math. Appl. 17 (1989), 1397-1421. (1989) Zbl0682.65049MR0992124DOI10.1016/0898-1221(89)90023-0
  4. Yang, Y. S., 10.1090/S0002-9939-1988-0958062-3, Proc. Amer. Math. Soc. 104 (1988), 175-180. (1988) Zbl0671.34016MR0958062DOI10.1090/S0002-9939-1988-0958062-3
  5. Pino, M. A. Del, Manásevich, R. F., Multiple solutions for the p -Laplacian under global nonresonance, Proc. Amer. Math. Soc. 112 (1991), 131-138. (1991) MR1045589
  6. Ma, R., Wang, H., 10.1080/00036819508840401, Appl. Anal. 59 (1995), 225-231. (1995) Zbl0841.34019MR1378037DOI10.1080/00036819508840401
  7. Ma, R., Zhang, J., Fu, S., 10.1006/jmaa.1997.5639, J. Math. Anal. Appl. 215 (1997), 415-422. (1997) Zbl0892.34009MR1490759DOI10.1006/jmaa.1997.5639
  8. Bai, Z., Wang, H., 10.1016/S0022-247X(02)00071-9, J. Math. Anal. Appl. 270 (2002), 357-368. (2002) Zbl1006.34023MR1915704DOI10.1016/S0022-247X(02)00071-9
  9. Bai, Z., Ge, W., 10.1016/S0022-247X(03)00011-8, J. Math. Anal. Appl. 279 (2003), 442-450. (2003) MR1974036DOI10.1016/S0022-247X(03)00011-8
  10. Yao, Q., 10.1016/S0096-3003(02)00152-2, Applied Mathematics and Computation 137 (2003), 477-485. (2003) Zbl1093.34515MR1950111DOI10.1016/S0096-3003(02)00152-2
  11. Li, Y., Abstract existence theorems of positive solutions for nonlinear boundary value problems, Nonlinear Anal. TMA 57 (2004), 211-227. (2004) Zbl1064.47058MR2056428
  12. Li, F., Li, Y., Liang, Z., 10.1016/j.jmaa.2006.09.025, J. Math. Anal. Appl. 331 (2007), 958-977. (2007) Zbl1119.34014MR2313694DOI10.1016/j.jmaa.2006.09.025
  13. Rynne, B. P., 10.1016/S0022-0396(02)00146-8, J. Differential Equations 188 (2003), 461-472. (2003) MR1954290DOI10.1016/S0022-0396(02)00146-8
  14. Rynne, B. P., Solution curves of 2 m th order boundary value problems, Electron. J. Differential Equations 32 (2004), 1-16. (2004) Zbl1060.34011MR2036216
  15. Bari, R., Rynne, B. P., 10.1016/j.jmaa.2003.08.043, J. Math. Anal. Appl. 292 (2004), 17-22. (2004) MR2050212DOI10.1016/j.jmaa.2003.08.043
  16. Ma, R., 10.1016/j.amc.2004.10.014, Appl. Math. Comput. 168 (2005), 1219-1231. (2005) Zbl1082.34023MR2171774DOI10.1016/j.amc.2004.10.014
  17. Ma, R., 10.1016/j.jmaa.2005.06.045, J. Math. Anal. Appl. 319 (2006), 424-434. (2006) Zbl1098.34012MR2227914DOI10.1016/j.jmaa.2005.06.045
  18. Ma, R., 10.1016/j.jmaa.2005.03.078, J. Math. Anal. Appl. 314 (2006), 254-265. (2006) Zbl1085.34015MR2183550DOI10.1016/j.jmaa.2005.03.078
  19. Elias, U., 10.1016/0022-0396(78)90039-6, J. Diff. Equations, 29 (1978), 28-57. (1978) Zbl0369.34008MR0486759DOI10.1016/0022-0396(78)90039-6
  20. Whyburn, G. T., Topological Analysis, Princeton University Press, Princeton (1958). (1958) Zbl0080.15903MR0099642
  21. Xu, J., Han, X., 10.1016/j.na.2006.10.017, Nonlinear Analysis TMA 67 (2007), 3350-3356. (2007) Zbl1136.34016MR2350891DOI10.1016/j.na.2006.10.017
  22. Rabinowitz, P., 10.1016/0022-1236(71)90030-9, J. Funct. Anal. 7 (1971), 487-513. (1971) Zbl0212.16504MR0301587DOI10.1016/0022-1236(71)90030-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.