On the blow up criterion for the 2-D compressible Navier-Stokes equations
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 1, page 195-209
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJiang, Lingyu, and Wang, Yidong. "On the blow up criterion for the 2-D compressible Navier-Stokes equations." Czechoslovak Mathematical Journal 60.1 (2010): 195-209. <http://eudml.org/doc/38001>.
@article{Jiang2010,
abstract = {Motivated by [10], we prove that the upper bound of the density function $\rho $ controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain.},
author = {Jiang, Lingyu, Wang, Yidong},
journal = {Czechoslovak Mathematical Journal},
keywords = {compressible Navier-Stokes equations; classical solutions; blow up criterion; compressible Navier-Stokes equations; classical solution; blow up criterion},
language = {eng},
number = {1},
pages = {195-209},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the blow up criterion for the 2-D compressible Navier-Stokes equations},
url = {http://eudml.org/doc/38001},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Jiang, Lingyu
AU - Wang, Yidong
TI - On the blow up criterion for the 2-D compressible Navier-Stokes equations
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 195
EP - 209
AB - Motivated by [10], we prove that the upper bound of the density function $\rho $ controls the finite time blow up of the classical solutions to the 2-D compressible isentropic Navier-Stokes equations. This result generalizes the corresponding result in [3] concerning the regularities to the weak solutions of the 2-D compressible Navier-Stokes equations in the periodic domain.
LA - eng
KW - compressible Navier-Stokes equations; classical solutions; blow up criterion; compressible Navier-Stokes equations; classical solution; blow up criterion
UR - http://eudml.org/doc/38001
ER -
References
top- Beale, J. T., Kato, T., Majda, A., 10.1007/BF01212349, Comm. Math. Phys. 94 (1984), 61-66. (1984) Zbl0573.76029MR0763762DOI10.1007/BF01212349
- Choe, H. J., Jin, B. J., 10.4134/JKMS.2003.40.6.1031, J. Korean Math. Soc. 40 (2003), 1031-1050. (2003) Zbl1034.76049MR2013486DOI10.4134/JKMS.2003.40.6.1031
- Desjardins, B., 10.1080/03605309708821291, Comm. P. D. E. 22 (1997), 977-1008. (1997) Zbl0885.35089MR1452175DOI10.1080/03605309708821291
- Feireisl, E., Novotný, A., Petzeltová, H., 10.1007/PL00000976, J. Math. Fluid Mech. 3 (2001), 358-392. (2001) MR1867887DOI10.1007/PL00000976
- Itaya, N., 10.2996/kmj/1138846265, Kdai Math. Sem. Rep. 23 (1971), 60-120. (1971) MR0283426DOI10.2996/kmj/1138846265
- Kozono, H., Taniuchi, Y., 10.1007/s002200000267, Comm. Math. Phys. 214 (2000), 191-200. (2000) Zbl0985.46015MR1794270DOI10.1007/s002200000267
- Lions, P. L., Mathematical Topics in Fluid Mechanics, Vol 2. Compressible Models, Oxford lecture series in Mathematics and its Applications, 10, Oxford Sciences Publications. The Clarendon Press, Oxford University Press, New York (1998). (1998) Zbl0908.76004MR1637634
- Tani, A., 10.2977/prims/1195190106, Publ. RIMS. Kyoto Univ. 13 (1977), 193-253. (1977) Zbl0366.35070DOI10.2977/prims/1195190106
- Xin, Z. P., 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C, Comm. Pure Appl. Math. 51 (1998), 229-240. (1998) MR1488513DOI10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
- Vaigant, V. A., Kazhikhov, A. V., On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid, Russian Sibirsk. Mat. Zh. 36 (1995), 1283-1316 translation in it Siberian Math. J. (1995). (1995) MR1375428
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.