Intuitionistic -fuzzy topological spaces
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 1, page 233-252
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYan, Cong-hua, and Wang, Xiao-ke. "Intuitionistic $I$-fuzzy topological spaces." Czechoslovak Mathematical Journal 60.1 (2010): 233-252. <http://eudml.org/doc/38004>.
@article{Yan2010,
abstract = {The main purpose of this paper is to introduce the concept of intuitionistic $\{\rm I\}$-fuzzy quasi-coincident neighborhood systems of intuitiostic fuzzy points. The relation between the category of intuitionistic $I$-fuzzy topological spaces and the category of intuitionistic $I$-fuzzy quasi-coincident neighborhood spaces are studied. By using fuzzifying topology, the notion of generated intuitionistic $I$-fuzzy topology is proposed, and the connections among generated intuitionistic $I$-fuzzy topological spaces, fuzzifying topological spaces and $I$-fuzzy topological spaces are discussed. Finally, the properties of the operators $\{\rm I\}\omega $, $\iota $ are obtained.},
author = {Yan, Cong-hua, Wang, Xiao-ke},
journal = {Czechoslovak Mathematical Journal},
keywords = {intuitionistic $I$-fuzzy topological space; intuitionistic fuzzy point; intuitionistic $I$-fuzzy quasi-coincident neighborhood space; fuzzifying topology; $I$-fuzzy topology; intuitionistic -fuzzy topological space; intuitionistic fuzzy point; intuitionistic -fuzzy quasi-coincident neighborhood space; fuzzifying topology; -fuzzy topology},
language = {eng},
number = {1},
pages = {233-252},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Intuitionistic $I$-fuzzy topological spaces},
url = {http://eudml.org/doc/38004},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Yan, Cong-hua
AU - Wang, Xiao-ke
TI - Intuitionistic $I$-fuzzy topological spaces
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 233
EP - 252
AB - The main purpose of this paper is to introduce the concept of intuitionistic ${\rm I}$-fuzzy quasi-coincident neighborhood systems of intuitiostic fuzzy points. The relation between the category of intuitionistic $I$-fuzzy topological spaces and the category of intuitionistic $I$-fuzzy quasi-coincident neighborhood spaces are studied. By using fuzzifying topology, the notion of generated intuitionistic $I$-fuzzy topology is proposed, and the connections among generated intuitionistic $I$-fuzzy topological spaces, fuzzifying topological spaces and $I$-fuzzy topological spaces are discussed. Finally, the properties of the operators ${\rm I}\omega $, $\iota $ are obtained.
LA - eng
KW - intuitionistic $I$-fuzzy topological space; intuitionistic fuzzy point; intuitionistic $I$-fuzzy quasi-coincident neighborhood space; fuzzifying topology; $I$-fuzzy topology; intuitionistic -fuzzy topological space; intuitionistic fuzzy point; intuitionistic -fuzzy quasi-coincident neighborhood space; fuzzifying topology; -fuzzy topology
UR - http://eudml.org/doc/38004
ER -
References
top- Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87-96. (1986) Zbl0631.03040MR0852871
- Atanassov, K. T., Intuitionistic Fuzzy Sets, Springer Heidelberg (1999). (1999) Zbl0939.03057MR1718470
- Birkhoff, G., Lattice Theory (third revised edition), Am. Math. Soc. Colloquium Pub. 25 Providence (1967). (1967) MR0227053
- Chang, C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182-190. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
- Çoker, D., An introduction to intuitionistic fuzzy topological space, Fuzzy Sets Syst. 88 (1997), 81-89. (1997) MR1449497
- Çoker, D., Demirci, M., On intuitionistic fuzzy points, Notes IFS 1-2 (1995), 79-84. (1995) MR1417217
- Çoker, D., Demirci, M., An introduction to intuitionistic fuzzy topological space in Šostak's sense, BUSEFAL 67 (1996), 61-66. (1996)
- Çoker, D., Demirci, M., On fuzzy inclusion in the intuitionistic sense, J. Fuzzy Math. 4 (1996), 701-714. (1996) MR1410641
- Hanafy, I. M., 10.1023/B:CMAJ.0000024523.64828.31, Czech Math. J. 53(158) (2003), 793-803. (2003) Zbl1080.54503MR2018831DOI10.1023/B:CMAJ.0000024523.64828.31
- Höhle, U., Rodabaugh, S. E., eds., Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers Dordrecht (1999). (1999) MR1788899
- Fang, Jin-ming, -FTOP is isomorphic to -FQN and -AITOP, Fuzzy Sets Syst. 147 (2004), 317-325. (2004) MR2089295
- Fang, Jinming, Yue, Yueli, Base and subbase in -fuzzy topological spaces, J. Math. Res. Expo. 26 (2006), 89-95. (2006) Zbl1101.54005MR2208585
- Lee, S. J., Lee, E. P., On the category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. 37 (2000), 63-76. (2000) MR1752195
- Lupiáñez, F. G., 10.1155/IJMMS.2005.1539, Int. J. Math. Math. Sci. 10 (2005), 1539-1542. (2005) MR2177859DOI10.1155/IJMMS.2005.1539
- Lupiáñez, F. G., 10.1108/03684920710749811, Kybernetes 36 (2007), 749-753. (2007) MR2371364DOI10.1108/03684920710749811
- Park, J. H., 10.1016/j.chaos.2004.02.051, Chaos Solitons Fractals 22 (2004), 1039-1046. (2004) Zbl1060.54010MR2078831DOI10.1016/j.chaos.2004.02.051
- Ramadan, A. A., Abbas, S. E., El-Latif, A. A. Abd, Compactness in intuitionistic fuzzy topological spaces, Int. J. Math. Math. Sci. 1 (2005), 19-32. (2005) MR2146013
- Rodabaugh, S. E., Powerset operator foundations for Poslat fuzzy set theories and topologies, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The handbooks of Fuzzy Sets Series, Vol. 3 Kluwer Academic Publishers Dordrecht (1999), 91-116. (1999) Zbl0974.03047MR1788901
- Šostak, A., On a fuzzy topological structure, Rend. Circ. Math. Palermo (Suppl. Ser. II) 11 (1985), 89-103. (1985) MR0897975
- Xu, Zeshui, Yager, R. R., 10.1080/03081070600574353, Int. J. Gen. Syst. 35 (2006), 417-433. (2006) Zbl1113.54003MR2243887DOI10.1080/03081070600574353
- Ying, Ming-sheng, A new approach for fuzzy topology (I), Fuzzy Sets Syst. 9 (1991), 303-321. (1991) MR1095905
- Yue, Yue-li, Fang, Jin-ming, On induced -fuzzy topological spaces, J. Math. Res. Exp. 25 (2005), 665-670 Chinese. (2005) MR2184241
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.