Intuitionistic I -fuzzy topological spaces

Cong-hua Yan; Xiao-ke Wang

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 1, page 233-252
  • ISSN: 0011-4642

Abstract

top
The main purpose of this paper is to introduce the concept of intuitionistic I -fuzzy quasi-coincident neighborhood systems of intuitiostic fuzzy points. The relation between the category of intuitionistic I -fuzzy topological spaces and the category of intuitionistic I -fuzzy quasi-coincident neighborhood spaces are studied. By using fuzzifying topology, the notion of generated intuitionistic I -fuzzy topology is proposed, and the connections among generated intuitionistic I -fuzzy topological spaces, fuzzifying topological spaces and I -fuzzy topological spaces are discussed. Finally, the properties of the operators I ω , ι are obtained.

How to cite

top

Yan, Cong-hua, and Wang, Xiao-ke. "Intuitionistic $I$-fuzzy topological spaces." Czechoslovak Mathematical Journal 60.1 (2010): 233-252. <http://eudml.org/doc/38004>.

@article{Yan2010,
abstract = {The main purpose of this paper is to introduce the concept of intuitionistic $\{\rm I\}$-fuzzy quasi-coincident neighborhood systems of intuitiostic fuzzy points. The relation between the category of intuitionistic $I$-fuzzy topological spaces and the category of intuitionistic $I$-fuzzy quasi-coincident neighborhood spaces are studied. By using fuzzifying topology, the notion of generated intuitionistic $I$-fuzzy topology is proposed, and the connections among generated intuitionistic $I$-fuzzy topological spaces, fuzzifying topological spaces and $I$-fuzzy topological spaces are discussed. Finally, the properties of the operators $\{\rm I\}\omega $, $\iota $ are obtained.},
author = {Yan, Cong-hua, Wang, Xiao-ke},
journal = {Czechoslovak Mathematical Journal},
keywords = {intuitionistic $I$-fuzzy topological space; intuitionistic fuzzy point; intuitionistic $I$-fuzzy quasi-coincident neighborhood space; fuzzifying topology; $I$-fuzzy topology; intuitionistic -fuzzy topological space; intuitionistic fuzzy point; intuitionistic -fuzzy quasi-coincident neighborhood space; fuzzifying topology; -fuzzy topology},
language = {eng},
number = {1},
pages = {233-252},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Intuitionistic $I$-fuzzy topological spaces},
url = {http://eudml.org/doc/38004},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Yan, Cong-hua
AU - Wang, Xiao-ke
TI - Intuitionistic $I$-fuzzy topological spaces
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 233
EP - 252
AB - The main purpose of this paper is to introduce the concept of intuitionistic ${\rm I}$-fuzzy quasi-coincident neighborhood systems of intuitiostic fuzzy points. The relation between the category of intuitionistic $I$-fuzzy topological spaces and the category of intuitionistic $I$-fuzzy quasi-coincident neighborhood spaces are studied. By using fuzzifying topology, the notion of generated intuitionistic $I$-fuzzy topology is proposed, and the connections among generated intuitionistic $I$-fuzzy topological spaces, fuzzifying topological spaces and $I$-fuzzy topological spaces are discussed. Finally, the properties of the operators ${\rm I}\omega $, $\iota $ are obtained.
LA - eng
KW - intuitionistic $I$-fuzzy topological space; intuitionistic fuzzy point; intuitionistic $I$-fuzzy quasi-coincident neighborhood space; fuzzifying topology; $I$-fuzzy topology; intuitionistic -fuzzy topological space; intuitionistic fuzzy point; intuitionistic -fuzzy quasi-coincident neighborhood space; fuzzifying topology; -fuzzy topology
UR - http://eudml.org/doc/38004
ER -

References

top
  1. Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87-96. (1986) Zbl0631.03040MR0852871
  2. Atanassov, K. T., Intuitionistic Fuzzy Sets, Springer Heidelberg (1999). (1999) Zbl0939.03057MR1718470
  3. Birkhoff, G., Lattice Theory (third revised edition), Am. Math. Soc. Colloquium Pub. 25 Providence (1967). (1967) MR0227053
  4. Chang, C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182-190. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
  5. Çoker, D., An introduction to intuitionistic fuzzy topological space, Fuzzy Sets Syst. 88 (1997), 81-89. (1997) MR1449497
  6. Çoker, D., Demirci, M., On intuitionistic fuzzy points, Notes IFS 1-2 (1995), 79-84. (1995) MR1417217
  7. Çoker, D., Demirci, M., An introduction to intuitionistic fuzzy topological space in Šostak's sense, BUSEFAL 67 (1996), 61-66. (1996) 
  8. Çoker, D., Demirci, M., On fuzzy inclusion in the intuitionistic sense, J. Fuzzy Math. 4 (1996), 701-714. (1996) MR1410641
  9. Hanafy, I. M., 10.1023/B:CMAJ.0000024523.64828.31, Czech Math. J. 53(158) (2003), 793-803. (2003) Zbl1080.54503MR2018831DOI10.1023/B:CMAJ.0000024523.64828.31
  10. Höhle, U., Rodabaugh, S. E., eds., Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers Dordrecht (1999). (1999) MR1788899
  11. Fang, Jin-ming, I -FTOP is isomorphic to I -FQN and I -AITOP, Fuzzy Sets Syst. 147 (2004), 317-325. (2004) MR2089295
  12. Fang, Jinming, Yue, Yueli, Base and subbase in I -fuzzy topological spaces, J. Math. Res. Expo. 26 (2006), 89-95. (2006) Zbl1101.54005MR2208585
  13. Lee, S. J., Lee, E. P., On the category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. 37 (2000), 63-76. (2000) MR1752195
  14. Lupiáñez, F. G., 10.1155/IJMMS.2005.1539, Int. J. Math. Math. Sci. 10 (2005), 1539-1542. (2005) MR2177859DOI10.1155/IJMMS.2005.1539
  15. Lupiáñez, F. G., 10.1108/03684920710749811, Kybernetes 36 (2007), 749-753. (2007) MR2371364DOI10.1108/03684920710749811
  16. Park, J. H., 10.1016/j.chaos.2004.02.051, Chaos Solitons Fractals 22 (2004), 1039-1046. (2004) Zbl1060.54010MR2078831DOI10.1016/j.chaos.2004.02.051
  17. Ramadan, A. A., Abbas, S. E., El-Latif, A. A. Abd, Compactness in intuitionistic fuzzy topological spaces, Int. J. Math. Math. Sci. 1 (2005), 19-32. (2005) MR2146013
  18. Rodabaugh, S. E., Powerset operator foundations for Poslat fuzzy set theories and topologies, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The handbooks of Fuzzy Sets Series, Vol. 3 Kluwer Academic Publishers Dordrecht (1999), 91-116. (1999) Zbl0974.03047MR1788901
  19. Šostak, A., On a fuzzy topological structure, Rend. Circ. Math. Palermo (Suppl. Ser. II) 11 (1985), 89-103. (1985) MR0897975
  20. Xu, Zeshui, Yager, R. R., 10.1080/03081070600574353, Int. J. Gen. Syst. 35 (2006), 417-433. (2006) Zbl1113.54003MR2243887DOI10.1080/03081070600574353
  21. Ying, Ming-sheng, A new approach for fuzzy topology (I), Fuzzy Sets Syst. 9 (1991), 303-321. (1991) MR1095905
  22. Yue, Yue-li, Fang, Jin-ming, On induced I -fuzzy topological spaces, J. Math. Res. Exp. 25 (2005), 665-670 Chinese. (2005) MR2184241

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.