Navier-Stokes equations on unbounded domains with rough initial data

Peer Christian Kunstmann

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 2, page 297-313
  • ISSN: 0011-4642

Abstract

top
We consider the Navier-Stokes equations in unbounded domains Ω n of uniform C 1 , 1 -type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded H -calculus on such domains, and use a general form of Kato’s method. We also obtain information on the corresponding pressure term.

How to cite

top

Kunstmann, Peer Christian. "Navier-Stokes equations on unbounded domains with rough initial data." Czechoslovak Mathematical Journal 60.2 (2010): 297-313. <http://eudml.org/doc/38008>.

@article{Kunstmann2010,
abstract = {We consider the Navier-Stokes equations in unbounded domains $\Omega \subseteq \mathbb \{R\} ^n$ of uniform $C^\{1,1\}$-type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded $H^\infty $-calculus on such domains, and use a general form of Kato’s method. We also obtain information on the corresponding pressure term.},
author = {Kunstmann, Peer Christian},
journal = {Czechoslovak Mathematical Journal},
keywords = {Navier-Stokes equations; mild solutions; Stokes operator; extrapolation spaces; $H^\infty $-functional calculus; general unbounded domains; pressure term; Navier-Stokes equations; mild solution; Stokes operator; extrapolation space; -functional calculus; general unbounded domain; pressure term},
language = {eng},
number = {2},
pages = {297-313},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Navier-Stokes equations on unbounded domains with rough initial data},
url = {http://eudml.org/doc/38008},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Kunstmann, Peer Christian
TI - Navier-Stokes equations on unbounded domains with rough initial data
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 297
EP - 313
AB - We consider the Navier-Stokes equations in unbounded domains $\Omega \subseteq \mathbb {R} ^n$ of uniform $C^{1,1}$-type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded $H^\infty $-calculus on such domains, and use a general form of Kato’s method. We also obtain information on the corresponding pressure term.
LA - eng
KW - Navier-Stokes equations; mild solutions; Stokes operator; extrapolation spaces; $H^\infty $-functional calculus; general unbounded domains; pressure term; Navier-Stokes equations; mild solution; Stokes operator; extrapolation space; -functional calculus; general unbounded domain; pressure term
UR - http://eudml.org/doc/38008
ER -

References

top
  1. Amann, H., 10.1007/s000210050018, J. Math. Fluid Mech. 2 (2000), 16-98. (2000) Zbl0989.35107MR1755865DOI10.1007/s000210050018
  2. Cannone, M., Ondelettes, paraproduits, et Navier-Stokes, Nouveaux Essais, Paris, Diderot (1995). (1995) Zbl1049.35517MR1688096
  3. Constantin, P., Foias, C., Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press (1988). (1988) Zbl0687.35071MR0972259
  4. Farwig, R., Kozono, H., Sohr, H., 10.1007/BF02588049, Acta Math. 195 (2005), 21-53. (2005) MR2233684DOI10.1007/BF02588049
  5. Farwig, R., Kozono, H., Sohr, H., 10.1007/s00013-006-1910-8, Arch. Math. 88 (2007), 239-248. (2007) Zbl1121.35097MR2305602DOI10.1007/s00013-006-1910-8
  6. Farwig, R., Kozono, H., Sohr, H., Maximal regularity of the Stokes operator in general unbounded domains of n , H. Amann Functional analysis and evolution equations. The Günter Lumer volume. Basel: Birkhäuser 257-272 (2008). (2008) MR2402733
  7. Giga, Y., 10.1007/BF00276874, Arch. Ration. Mech. Anal. 89 (1985), 251-265. (1985) MR0786549DOI10.1007/BF00276874
  8. Grisvard, P., Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24, Pitman (1985). (1985) Zbl0695.35060MR0775683
  9. Haak, B. H., Kunstmann, P. C., 10.1137/060656139, SIAM J. Control Optim. 45 (2007), 2094-2118. (2007) Zbl1126.93021MR2285716DOI10.1137/060656139
  10. Haak, B. H., Kunstmann, P. C., 10.1007/s00021-008-0270-5, J. Math. Fluid Mech 11 (2009), 492-535. (2009) MR2574794DOI10.1007/s00021-008-0270-5
  11. Kalton, N. J., Kunstmann, P. C., Weis, L., 10.1007/s00208-005-0742-3, Math. Ann. 336 (2006), 747-801. (2006) MR2255174DOI10.1007/s00208-005-0742-3
  12. Kozono, H., Yamazaki, M., 10.1080/03605309408821042, Commun. Partial Differ. Equations 19 (1994), 959-1014. (1994) Zbl0803.35068MR1274547DOI10.1080/03605309408821042
  13. Kunstmann, P. C., Maximal L p -regularity for second order elliptic operators with uniformly continuous coefficients on domains, in Iannelli, Mimmo Evolution equations: applications to physics, industry, life sciences and economics, Basel, Birkhäuser., Prog. Nonlinear Differ. Equ. Appl. Vol. 55 293-305 (2003). (2003) MR2013196
  14. Kunstmann, P. C., 10.1007/s00013-008-2621-0, Arch. Math. 91 (2008), 178-186. (2008) MR2430801DOI10.1007/s00013-008-2621-0
  15. Kunstmann, P. C., Weis, L., 10.1007/978-3-540-44653-8_2, M. Iannelli, R. Nagel, S. Piazzera Functional Analytic Methods for Evolution Equations, Springer Lecture Notes Math. Vol. 1855 65-311 (2004). (2004) MR2108959DOI10.1007/978-3-540-44653-8_2
  16. Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris, Dunod (1969). (1969) Zbl0189.40603MR0259693
  17. Meyer, Y., Wavelets, paraproducts, and Navier-Stokes equations, R. Bott Current developments in mathematics, 1996. Proceedings of the joint seminar, Cambridge, MA, USA 1996. Cambridge, International Press 105-212 (1997). (1997) Zbl0926.35115MR1724946
  18. Prüss, J., Simonett, G., 10.1007/s00013-004-0585-2, Arch. Math. 82 (2004), 415-431. (2004) MR2061448DOI10.1007/s00013-004-0585-2
  19. Sohr, H., The Navier-Stokes equations, An elementary functional analytic approach, Basel, Birkhäuser (2001). (2001) Zbl1007.35051MR1928881
  20. Triebel, H., Interpolation, Function Spaces, Differential Operators, North-Holland Mathematical Library. Vol. 18. Amsterdam-New York-Oxford (1978). (1978) MR0503903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.