The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces

Rovshan A. Bandaliev

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 2, page 327-337
  • ISSN: 0011-4642

Abstract

top
The main purpose of this paper is to prove the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent. As an application we prove the boundedness of certain sublinear operators on the weighted variable Lebesgue space.

How to cite

top

Bandaliev, Rovshan A.. "The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces." Czechoslovak Mathematical Journal 60.2 (2010): 327-337. <http://eudml.org/doc/38010>.

@article{Bandaliev2010,
abstract = {The main purpose of this paper is to prove the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent. As an application we prove the boundedness of certain sublinear operators on the weighted variable Lebesgue space.},
author = {Bandaliev, Rovshan A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {variable Lebesgue space; weights; Hardy operator; boundedness; variable Lebesgue space; weight; Hardy operator; boundedness},
language = {eng},
number = {2},
pages = {327-337},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces},
url = {http://eudml.org/doc/38010},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Bandaliev, Rovshan A.
TI - The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 327
EP - 337
AB - The main purpose of this paper is to prove the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent. As an application we prove the boundedness of certain sublinear operators on the weighted variable Lebesgue space.
LA - eng
KW - variable Lebesgue space; weights; Hardy operator; boundedness; variable Lebesgue space; weight; Hardy operator; boundedness
UR - http://eudml.org/doc/38010
ER -

References

top
  1. Abbasova, M. M., Bandaliev, R. A., On the boundedness of Hardy operator in the weighted variable exponent spaces, Proc. of Nat. Acad. of Sci. of Azerbaijan. Embedding theorems. Harmonic Analysis. 13 (2007), 5-17. (2007) 
  2. Acerbi, E., Mingione, G., 10.1215/S0012-7094-07-13623-8, Duke Math. J. 136 (2007), 285-320. (2007) Zbl1113.35105MR2286632DOI10.1215/S0012-7094-07-13623-8
  3. Bandaliev, R. A., On an inequality in Lebesgue space with mixed norm and with variable summability exponent, Mat. Zametki 84 (2008), 323-333 Russian. (2008) Zbl1171.46023MR2473750
  4. Bradley, J., 10.4153/CMB-1978-071-7, Canadian Mathematical Bull. 21 (1978), 405-408. (1978) Zbl0402.26006MR0523580DOI10.4153/CMB-1978-071-7
  5. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., The maximal function on variable L p spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238. (2003) MR1976842
  6. Diening, L., Maximal function on generalized Lebesgue spaces L p ( · ) , Math. Inequal. Appl. 7 (2004), 245-253. (2004) MR2057643
  7. Diening, L., Samko, S., Hardy inequality in variable exponent Lebesgue spaces, Frac. Calc. and Appl. Anal. 10 (2007), 1-18. (2007) Zbl1132.26341MR2348863
  8. Edmunds, D. E., Kokilashvili, V., 10.4153/CMB-1995-043-5, Canadian Math. Bull. 38 (1995), 295-303. (1995) Zbl0839.47022MR1347301DOI10.4153/CMB-1995-043-5
  9. Edmunds, D. E., Kokilashvili, V., Meskhi, A., On the boundedness and compactness of weighted Hardy operators in spaces L p ( x ) , Georgian Math. J. 12 (2005), 27-44. (2005) MR2136721
  10. Edmunds, D. E., Kokilashvili, V., Meskhi, A., Bounded and compact integral operators, Math. and Its Applications. 543, Kluwer Acad.Publish., Dordrecht (2002). (2002) Zbl1023.42001MR1920969
  11. Edmunds, D. E., Kokilashvili, V., Meskhi, A., Two-weight estimates in L p ( x ) spaces for classical integral operators and applications to the norm summability of Fourier trigonometric series, Proc. A. Razmadze Math. Inst. 142 (2006), 123-128. (2006) MR2294574
  12. Gadjiev, A. D., Aliev, I. A., Weighted estimates for multidimensional singular integrals generated by a generalized shift operator, Mat. Sbornik 183 (1992), 45-66 Russian. (1992) MR1198834
  13. Guliev, V. S., Two-weight inequalities for integral operators in L p -spaces and their applications, Trudy Mat. Inst. Steklov. 204 (1993), 97-116. (1993) MR1320021
  14. Guliev, V. S., Integral operators on function spaces defined on homogeneous groups and domains in R n . Doctor’s dissertation, Mat. Inst. Steklov. (1994), 1-329. (1994) 
  15. Harjulehto, P., Hästö, P., Koskenoja, M., Hardy's inequality in a variable exponent Sobolev space, Georgian Math. J. 12 (2005), 431-442. (2005) Zbl1096.46017MR2174945
  16. Kokilashvili, V., Meskhi, A., Two-weight inequalities for singular integrals defined on homogeneous groups, Proc. A. Razmadze Math. Inst. 112 (1997), 57-90. (1997) Zbl0983.43501MR1468962
  17. Kokilashvili, V., Samko, S. G., Singular integrals in weighted Lebesgue space with variable exponent, Georgian Math. J. 10 (2003), 145-156. (2003) MR1990694
  18. Kokilashvili, V., Samko, S. G., The maximal operator in weighted variable spaces on metric measure space, Proc. A. Razmadze Math. Inst. 144 (2007), 137-144. (2007) MR2387413
  19. Kopaliani, T. S., 10.1007/s10587-004-6427-3, Czech. Math. J. 54 (2004), 791-805. (2004) Zbl1080.47040MR2086735DOI10.1007/s10587-004-6427-3
  20. Kováčik, O., Rákosník, J., On spaces L p ( x ) and W k , p ( x ) , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
  21. Krbec, M., Opic, B., Pick, L., Rákosník, J., Some recent results on Hardy type operators in weighted function spaces and related topics, Function spaces, differential operators and nonlinear analysis (Frie4ichroda, 1992). 158-184, Teubner-Texte Math., 133, Teubner, Stuttgart (1993). (1993) MR1242582
  22. Lu, G., Lu, Sh., Yang, D., 10.1023/A:1016568918973, Analysis Math. 28 (2002), 103-134. (2002) Zbl1026.43007MR1918254DOI10.1023/A:1016568918973
  23. Mashiyev, R. A., Çekiç, B., Mamedov, F. I., Ogras, S., 10.1016/j.jmaa.2006.12.043, J. Math. Anal. Appl. 334 (2007), 289-298. (2007) MR2332556DOI10.1016/j.jmaa.2006.12.043
  24. Maz'ya, V. G., Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York (1985). (1985) Zbl0727.46017MR0817985
  25. Muckenhoupt, B., Hardy's inequality with weights, Studia Math. 44 (1972), 31-38. (1972) Zbl0236.26015MR0311856
  26. Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034. Springer-Verlag, Berlin-Heidelberg-New York (1983). (1983) Zbl0557.46020MR0724434
  27. Musielak, J., Orlicz, W., On modular spaces, Studia Math. 18 (1959), 49-65. (1959) Zbl0099.09202MR0101487
  28. Nakano, H., Modulared semi-ordered linear spaces, Maruzen. Co., Ltd., Tokyo (1950). (1950) Zbl0041.23401MR0038565
  29. Nekvinda, A., Hardy-Littlewood maximal operator in L p ( x ) ( R n ) , Math. Ineq. Appl. 7 (2004), 255-265. (2004) MR2057644
  30. Opic, B., Kufner, A., Hardy-Type Inequalities, Pitman Research Notes in Math. ser., 219. Longman sci. and tech., Harlow (1990). (1990) Zbl0698.26007MR1069756
  31. Orlicz, W., Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200-212. (1931) Zbl0003.25203
  32. Růžička, M., Electrorheological Fluids: Modeling and Mathematical theory, Lecture Notes in Math. 1748. Springer-Verlag, Berlin (2000). (2000) MR1810360
  33. Samko, S. G., Differentiation and integration of variable order and the spaces L p ( x ) , Proc.Inter.Conf. "Operator theory for Complex and Hypercomplex analysis". 1994, 203-219. Contemp. Math., 212, AMS, Providence, RI, 1998. MR1486602
  34. Samko, S. G., 10.1080/10652469808819191, Integ. Trans. and Special Funct. 7 (1998), 123-144. (1998) MR1658190DOI10.1080/10652469808819191
  35. Sharapudinov, I. I., On a topology of the space L p ( t ) ( [ 0 , 1 ] ) , Mat. Zametki 26 (1979), 613-637 Russian. (1979) MR0552723
  36. Sharapudinov, I. I., The basis property of the Haar system in the space L p ( t ) ( [ 0 , 1 ] ) and the principle of localization in the mean, Mat. Sbornik 130 (1986), 275-283 Russian. (1986) MR0854976
  37. Soria, F., Weiss, G., 10.1512/iumj.1994.43.43009, Indiana Univ. Math. J. 43 (1994), 187-204. (1994) Zbl0803.42004MR1275458DOI10.1512/iumj.1994.43.43009
  38. Zeren, Y., Guliyev, V. S., Two-weight norm inequalities for some anisotropic sublinear operators, Turkish Math. J. 30 (2006), 329-350. (2006) Zbl1179.42015MR2248753
  39. Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk Russian 50 (1986), 675-710 Russian. (1986) Zbl0599.49031MR0864171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.