On nonmeasurable images
Robert Rałowski; Szymon Żeberski
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 2, page 423-434
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRałowski, Robert, and Żeberski, Szymon. "On nonmeasurable images." Czechoslovak Mathematical Journal 60.2 (2010): 423-434. <http://eudml.org/doc/38017>.
@article{Rałowski2010,
abstract = {Let $(X,\mathbb \{I\})$ be a Polish ideal space and let $T$ be any set. We show that under some conditions on a relation $R\subseteq T^2\times X$ it is possible to find a set $A\subseteq T$ such that $R(A^2)$ is completely $\mathbb \{I\} $-nonmeasurable, i.e, it is $\mathbb \{I\}$-nonmeasurable in every positive Borel set. We also obtain such a set $A\subseteq T$ simultaneously for continuum many relations $(R_\alpha )_\{\alpha <2^\omega \}.$ Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.},
author = {Rałowski, Robert, Żeberski, Szymon},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonmeasurable set; Bernstein set; Polish ideal space; nonmeasurable set; Bernstein set; Polish ideal space},
language = {eng},
number = {2},
pages = {423-434},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On nonmeasurable images},
url = {http://eudml.org/doc/38017},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Rałowski, Robert
AU - Żeberski, Szymon
TI - On nonmeasurable images
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 423
EP - 434
AB - Let $(X,\mathbb {I})$ be a Polish ideal space and let $T$ be any set. We show that under some conditions on a relation $R\subseteq T^2\times X$ it is possible to find a set $A\subseteq T$ such that $R(A^2)$ is completely $\mathbb {I} $-nonmeasurable, i.e, it is $\mathbb {I}$-nonmeasurable in every positive Borel set. We also obtain such a set $A\subseteq T$ simultaneously for continuum many relations $(R_\alpha )_{\alpha <2^\omega }.$ Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.
LA - eng
KW - nonmeasurable set; Bernstein set; Polish ideal space; nonmeasurable set; Bernstein set; Polish ideal space
UR - http://eudml.org/doc/38017
ER -
References
top- Cichoń, J., Jasiński, A., 10.14321/realanalexch.28.2.0493, Real Anal. Exchange 28 (2003), 493-497. (2003) MR2010332DOI10.14321/realanalexch.28.2.0493
- Cichoń, J., Morayne, M., Rałowski, R., Ryll-Nardzewski, Cz., {.Z}eberski, Sz., On nonmeasurable unions, Topology and its Applications 154 (2007), 884-893. (2007) MR2294636
- Ciesielski, K., Fejzić, H., Freiling, C., Measure zero sets with non-measurable sum, Real Anal. Exchange 27 (2001/02), 783-793. (2001) MR1923168
- Kharazishvili, A., Some remarks on additive properties of invariant -ideals on the real line, Real Anal. Exchange 21 (1995/96), 715-724. (1995) Zbl0879.28026MR1407284
- Kysiak, M., 10.4064/cm102-1-10, Colloquium Mathematicum 102 (2005), 113-122. (2005) Zbl1072.28002MR2150273DOI10.4064/cm102-1-10
- Rałowski, R., {.Z}eberski, Sz., Complete nonmeasurability in regular families, Houston Journal in Mathematics 34 (2008), 773-780. (2008) MR2448381
- Sierpiński, W., 10.4064/fm-1-1-105-111, Fundamenta Mathematicae 1 (1920), 105-111 7.0180.03. (1920) DOI10.4064/fm-1-1-105-111
- {.Z}eberski, Sz., 10.1002/malq.200610024, Mathematical Logic Quarterly 53 (2007), 38-42. (2007) Zbl1109.03046MR2288888DOI10.1002/malq.200610024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.