An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 3, page 621-633
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMyers, Timothy. "An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability." Czechoslovak Mathematical Journal 60.3 (2010): 621-633. <http://eudml.org/doc/38031>.
@article{Myers2010,
abstract = {It is commonly known that absolute gauge integrability, or Henstock-Kurzweil (H-K) integrability implies Lebesgue integrability. In this article, we are going to present another proof of that fact which utilizes the basic definitions and properties of the Lebesgue and H-K integrals.},
author = {Myers, Timothy},
journal = {Czechoslovak Mathematical Journal},
keywords = {absolute integrability; gauge Integral; H-K integral; Lebesgue integral; absolute integrability; gauge integral; H-K integral; Lebesgue integral},
language = {eng},
number = {3},
pages = {621-633},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability},
url = {http://eudml.org/doc/38031},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Myers, Timothy
TI - An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 621
EP - 633
AB - It is commonly known that absolute gauge integrability, or Henstock-Kurzweil (H-K) integrability implies Lebesgue integrability. In this article, we are going to present another proof of that fact which utilizes the basic definitions and properties of the Lebesgue and H-K integrals.
LA - eng
KW - absolute integrability; gauge Integral; H-K integral; Lebesgue integral; absolute integrability; gauge integral; H-K integral; Lebesgue integral
UR - http://eudml.org/doc/38031
ER -
References
top- Bartle, R., 10.2307/2974874, Am. Math. Mon. 103 (1996), 625-632 . (1996) Zbl0884.26007MR1413583DOI10.2307/2974874
- Bugajewska, D., On the equation of th order and the Denjoy integral, Nonlinear Anal. 34 (1998), 1111-1115. (1998) Zbl0948.34003MR1637221
- Bugajewska, D., Bugajewski, D., On nonlinear integral equations and nonabsolute convergent integrals, Dyn. Syst. Appl. 14 (2005), 135-148 . (2005) Zbl1077.45004MR2128317
- Bugajewski, D., Szufla, S., On the Aronszajn property for differential equations and the Denjoy integral, Ann. Soc. Math. 35 (1995), 61-69 . (1995) Zbl0854.34005MR1384852
- Chew, T., Flordeliza, F., On and Henstock-Kurzweil integrals, Differ. Integral Equ. 4 (1991), 861-868 . (1991) Zbl0733.34004MR1108065
- Henstock, R., Definitions of Riemann type of the variational integral, Proc. Lond. Math. Soc. 11 (1961), 404-418. (1961) MR0132147
- Henstock, R., The General Theory of Integration, Oxford Math. Monogr., Clarendon Press, Oxford (1991) . Zbl0745.26006MR1134656
- Kurzweil, J., Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter, Czech. Math. J. 7 (1957), 418-449 . (1957) Zbl0090.30002MR0111875
- McLeod, R., The Generalized Riemann Integral, Carus Math. Monogr., no. 20, Mathematical Association of America, Washington (1980) . Zbl0486.26005MR0588510
- Munkres, J., Analysis on Manifolds, Addison-Wesley Publishing Company, Redwood City, CA (1991) . Zbl0743.26006MR1079066
- Pfeffer, W., The divergence theorem, Trans. Am. Math. Soc. 295 (1986), 665-685 . (1986) Zbl0596.26007MR0833702
- Pfeffer, W., The multidimensional fundamental theorem of calculus, J. Austral. Math. Soc. (Ser. A) 43 (1987), 143-170 . (1987) Zbl0638.26011MR0896622
- Rudin, W., Principles of Mathematical Analysis, Third Ed., McGraw-Hill, New York (1976) . Zbl0346.26002MR0385023
- Rudin, W., Real and Complex Analysis, McGraw-Hill, New York (1987). (1987) Zbl0925.00005MR0924157
- Schwabik, Š., The Perron integral in ordinary differential equations, Differ. Integral Equ. 6 (1993), 863-882 . (1993) Zbl0784.34006MR1222306
- Spivak, M., Calculus on Manifolds, W. A. Benjamin, Menlo Park, CA (1965). (1965) Zbl0141.05403MR0209411
- Stromberg, K., An Introduction to Classical Real Analysis, Waldworth, Inc (1981). (1981) Zbl0454.26001MR0604364
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.