Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 3, page 699-713
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDeniz, Erhan, and Orhan, Halit. "Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator." Czechoslovak Mathematical Journal 60.3 (2010): 699-713. <http://eudml.org/doc/38037>.
@article{Deniz2010,
abstract = {By making use of the known concept of neighborhoods of analytic functions we prove several inclusions associated with the $(j,\delta )$-neighborhoods of various subclasses of starlike and convex functions of complex order $b$ which are defined by the generalized Ruscheweyh derivative operator. Further, partial sums and integral means inequalities for these function classes are studied. Relevant connections with some other recent investigations are also pointed out.},
author = {Deniz, Erhan, Orhan, Halit},
journal = {Czechoslovak Mathematical Journal},
keywords = {neighborhoods; partial sums; integral means; generalized Ruscheweyh derivative; neighborhood; partial sum; integral mean; generalized Ruscheweyh derivative},
language = {eng},
number = {3},
pages = {699-713},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator},
url = {http://eudml.org/doc/38037},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Deniz, Erhan
AU - Orhan, Halit
TI - Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 699
EP - 713
AB - By making use of the known concept of neighborhoods of analytic functions we prove several inclusions associated with the $(j,\delta )$-neighborhoods of various subclasses of starlike and convex functions of complex order $b$ which are defined by the generalized Ruscheweyh derivative operator. Further, partial sums and integral means inequalities for these function classes are studied. Relevant connections with some other recent investigations are also pointed out.
LA - eng
KW - neighborhoods; partial sums; integral means; generalized Ruscheweyh derivative; neighborhood; partial sum; integral mean; generalized Ruscheweyh derivative
UR - http://eudml.org/doc/38037
ER -
References
top- Ahuja, O. P., Fekete-Szegö Problem for a unified class of analytic functions, Panam. Math. J. 7 (1997), 67-78. (1997) Zbl0878.30010MR1442222
- Ahuja, O. P., 10.1155/S0161171285000710, Int. J. Math. Math. Sci. 8 (1985), 653-662. (1985) Zbl0594.30012MR0821620DOI10.1155/S0161171285000710
- Ahuja, O. P., Hadamard products of analytic functions defined by Ruscheweyh derivatives, In: Current Topics in Analytic Function Theory H. M. Srivastava, S. Owa World Scientific Publishing Company Singapore (1992), 13-28. (1992) Zbl1002.30007MR1232426
- Altintaş, O., Owa, S., 10.1155/S016117129600110X, Int. J. Math. Math. Sci. 19 (1996), 797-800. (1996) MR1397848DOI10.1155/S016117129600110X
- Aouf, M. K., 10.1155/IJMMS/2006/38258, Int. J. Math. Math. Sci. 2006 (2006), 1-6. (2006) Zbl1118.30006MR2251704DOI10.1155/IJMMS/2006/38258
- Cho, N. C., Owa, S., Partial sums of meromorphic functions, JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 30 Electronic only. MR2085674
- Goodman, A. W., 10.1090/S0002-9939-1957-0086879-9, Proc. Am. Math. Soc. 8 (1957), 598-601. (1957) MR0086879DOI10.1090/S0002-9939-1957-0086879-9
- Keerthi, B. S., Gangadharan, A., Srivastava, H. M., 10.1016/j.mcm.2007.04.004, Math. Comput. Modelling 47 (2008), 271-277. (2008) Zbl1140.30005MR2378834DOI10.1016/j.mcm.2007.04.004
- Latha, S., Shivarudrappa, L., Partial sums of meromorphic functions, JIPAM, J. Ineq. Pure Appl. Math. 7 (2006), Art. 140 Electronic only. MR2268594
- Littlewood, J. E., 10.1112/plms/s2-23.1.481, Proc. Lond. Math. Soc. 23 (1925), 481-519. (1925) DOI10.1112/plms/s2-23.1.481
- Murugunsundaramoorthy, G., Srivastava, H. M., Neighborhoods of certain classes of analytic functions of complex order, JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 24 Electronic only. MR2085668
- Nasr, M. A., Aouf, M. K., Starlike function of complex order, J. Nat. Sci. Math. 25 (1985), 1-12. (1985) Zbl0596.30017MR0805912
- Orhan, H., On neighborhoods of analytic functions defined by using Hadamard product, Novi Sad J. Math. 37 (2007), 17-25. (2007) Zbl1164.30010MR2402046
- Orhan, H., Neighborhoods of a certain class of -valent functions with negative coefficients defined by using a differential operator, Math. Ineq. Appl. 12 (2009), 335-349. (2009) Zbl1162.30315MR2521398
- Owa, S., Sekine, T., 10.1016/j.jmaa.2004.09.056, J. Math. Anal. Appl. 304 (2005), 772-782. (2005) Zbl1131.30367MR2127606DOI10.1016/j.jmaa.2004.09.056
- Raina, R. K., Bansal, D., Some properties of a new class of analytic functions defined in terms of a Hadamard product, JIPAM, J. Ineq. Pure Appl. Math. 9 (2008), Art. 22 Electronic only. Zbl1165.30339MR2391289
- Robertson, M. S., 10.2307/1968451, Ann. Math. 37 (1936), 374-408. (1936) Zbl0014.16505MR1503286DOI10.2307/1968451
- Ruscheweyh, S., 10.1090/S0002-9939-1981-0601721-6, Proc. Am. Math. Soc. 81 (1981), 521-527. (1981) Zbl0458.30008MR0601721DOI10.1090/S0002-9939-1981-0601721-6
- Ruscheweyh, S., 10.1090/S0002-9939-1975-0367176-1, Proc. Am. Math. Soc. 49 (1975), 109-115. (1975) Zbl0303.30006MR0367176DOI10.1090/S0002-9939-1975-0367176-1
- Silverman, H., 10.1090/S0002-9939-1975-0369678-0, Proc. Am. Math. Soc. 51 (1975), 109-116. (1975) Zbl0311.30007MR0369678DOI10.1090/S0002-9939-1975-0369678-0
- Silverman, H., Neighborhoods of classes of analytic functions, Far East J. Math. Sci. 3 (1995), 165-169. (1995) Zbl0935.30009MR1385117
- Silverman, H., 10.1006/jmaa.1997.5361, J. Math. Anal. Appl. 209 (1997), 221-227. (1997) Zbl0894.30010MR1444523DOI10.1006/jmaa.1997.5361
- Silverman, H., Subclasses of starlike functions, Rev. Roum. Math. Pures Appl. 23 (1978), 1093-1099. (1978) Zbl0389.30005MR0509608
- Silverman, H., Silvia, E. M., 10.4153/CJM-1985-004-7, Can. J. Math. 37 (1985), 48-61. (1985) Zbl0574.30015MR0777038DOI10.4153/CJM-1985-004-7
- Sohi, N. S., Singh, L. P., A class of bounded starlike functions of complex order, Indian J. Pure Appl. Math. 33 (1991), 29-35. (1991) Zbl0721.30005MR1088617
- Srivastava, H. M., Orhan, H., 10.1016/j.aml.2006.07.009, Appl. Math. Lett. 20 (2007), 686-691. (2007) Zbl1111.30012MR2314414DOI10.1016/j.aml.2006.07.009
- Srivastava, H. M., (Eds.), S. Owa, Current Topics in Analytic Function Theory, World Scientific Publishing Company Singapore-New Jersey-London-Hong Kong (1992). (1992) Zbl0976.00007MR1232424
- Wiatrowski, P., The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Univ. Lodz, Nauki Mat. Przyrod. Ser. II, Zeszyt 39 (1971), 75-85 Polish. (1971) MR0338350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.