Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator

Erhan Deniz; Halit Orhan

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 3, page 699-713
  • ISSN: 0011-4642

Abstract

top
By making use of the known concept of neighborhoods of analytic functions we prove several inclusions associated with the ( j , δ ) -neighborhoods of various subclasses of starlike and convex functions of complex order b which are defined by the generalized Ruscheweyh derivative operator. Further, partial sums and integral means inequalities for these function classes are studied. Relevant connections with some other recent investigations are also pointed out.

How to cite

top

Deniz, Erhan, and Orhan, Halit. "Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator." Czechoslovak Mathematical Journal 60.3 (2010): 699-713. <http://eudml.org/doc/38037>.

@article{Deniz2010,
abstract = {By making use of the known concept of neighborhoods of analytic functions we prove several inclusions associated with the $(j,\delta )$-neighborhoods of various subclasses of starlike and convex functions of complex order $b$ which are defined by the generalized Ruscheweyh derivative operator. Further, partial sums and integral means inequalities for these function classes are studied. Relevant connections with some other recent investigations are also pointed out.},
author = {Deniz, Erhan, Orhan, Halit},
journal = {Czechoslovak Mathematical Journal},
keywords = {neighborhoods; partial sums; integral means; generalized Ruscheweyh derivative; neighborhood; partial sum; integral mean; generalized Ruscheweyh derivative},
language = {eng},
number = {3},
pages = {699-713},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator},
url = {http://eudml.org/doc/38037},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Deniz, Erhan
AU - Orhan, Halit
TI - Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 699
EP - 713
AB - By making use of the known concept of neighborhoods of analytic functions we prove several inclusions associated with the $(j,\delta )$-neighborhoods of various subclasses of starlike and convex functions of complex order $b$ which are defined by the generalized Ruscheweyh derivative operator. Further, partial sums and integral means inequalities for these function classes are studied. Relevant connections with some other recent investigations are also pointed out.
LA - eng
KW - neighborhoods; partial sums; integral means; generalized Ruscheweyh derivative; neighborhood; partial sum; integral mean; generalized Ruscheweyh derivative
UR - http://eudml.org/doc/38037
ER -

References

top
  1. Ahuja, O. P., Fekete-Szegö Problem for a unified class of analytic functions, Panam. Math. J. 7 (1997), 67-78. (1997) Zbl0878.30010MR1442222
  2. Ahuja, O. P., 10.1155/S0161171285000710, Int. J. Math. Math. Sci. 8 (1985), 653-662. (1985) Zbl0594.30012MR0821620DOI10.1155/S0161171285000710
  3. Ahuja, O. P., Hadamard products of analytic functions defined by Ruscheweyh derivatives, In: Current Topics in Analytic Function Theory H. M. Srivastava, S. Owa World Scientific Publishing Company Singapore (1992), 13-28. (1992) Zbl1002.30007MR1232426
  4. Altintaş, O., Owa, S., 10.1155/S016117129600110X, Int. J. Math. Math. Sci. 19 (1996), 797-800. (1996) MR1397848DOI10.1155/S016117129600110X
  5. Aouf, M. K., 10.1155/IJMMS/2006/38258, Int. J. Math. Math. Sci. 2006 (2006), 1-6. (2006) Zbl1118.30006MR2251704DOI10.1155/IJMMS/2006/38258
  6. Cho, N. C., Owa, S., Partial sums of meromorphic functions, JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 30 Electronic only. MR2085674
  7. Goodman, A. W., 10.1090/S0002-9939-1957-0086879-9, Proc. Am. Math. Soc. 8 (1957), 598-601. (1957) MR0086879DOI10.1090/S0002-9939-1957-0086879-9
  8. Keerthi, B. S., Gangadharan, A., Srivastava, H. M., 10.1016/j.mcm.2007.04.004, Math. Comput. Modelling 47 (2008), 271-277. (2008) Zbl1140.30005MR2378834DOI10.1016/j.mcm.2007.04.004
  9. Latha, S., Shivarudrappa, L., Partial sums of meromorphic functions, JIPAM, J. Ineq. Pure Appl. Math. 7 (2006), Art. 140 Electronic only. MR2268594
  10. Littlewood, J. E., 10.1112/plms/s2-23.1.481, Proc. Lond. Math. Soc. 23 (1925), 481-519. (1925) DOI10.1112/plms/s2-23.1.481
  11. Murugunsundaramoorthy, G., Srivastava, H. M., Neighborhoods of certain classes of analytic functions of complex order, JIPAM, J. Ineq. Pure Appl. Math. 5 (2004), Art. 24 Electronic only. MR2085668
  12. Nasr, M. A., Aouf, M. K., Starlike function of complex order, J. Nat. Sci. Math. 25 (1985), 1-12. (1985) Zbl0596.30017MR0805912
  13. Orhan, H., On neighborhoods of analytic functions defined by using Hadamard product, Novi Sad J. Math. 37 (2007), 17-25. (2007) Zbl1164.30010MR2402046
  14. Orhan, H., Neighborhoods of a certain class of p -valent functions with negative coefficients defined by using a differential operator, Math. Ineq. Appl. 12 (2009), 335-349. (2009) Zbl1162.30315MR2521398
  15. Owa, S., Sekine, T., 10.1016/j.jmaa.2004.09.056, J. Math. Anal. Appl. 304 (2005), 772-782. (2005) Zbl1131.30367MR2127606DOI10.1016/j.jmaa.2004.09.056
  16. Raina, R. K., Bansal, D., Some properties of a new class of analytic functions defined in terms of a Hadamard product, JIPAM, J. Ineq. Pure Appl. Math. 9 (2008), Art. 22 Electronic only. Zbl1165.30339MR2391289
  17. Robertson, M. S., 10.2307/1968451, Ann. Math. 37 (1936), 374-408. (1936) Zbl0014.16505MR1503286DOI10.2307/1968451
  18. Ruscheweyh, S., 10.1090/S0002-9939-1981-0601721-6, Proc. Am. Math. Soc. 81 (1981), 521-527. (1981) Zbl0458.30008MR0601721DOI10.1090/S0002-9939-1981-0601721-6
  19. Ruscheweyh, S., 10.1090/S0002-9939-1975-0367176-1, Proc. Am. Math. Soc. 49 (1975), 109-115. (1975) Zbl0303.30006MR0367176DOI10.1090/S0002-9939-1975-0367176-1
  20. Silverman, H., 10.1090/S0002-9939-1975-0369678-0, Proc. Am. Math. Soc. 51 (1975), 109-116. (1975) Zbl0311.30007MR0369678DOI10.1090/S0002-9939-1975-0369678-0
  21. Silverman, H., Neighborhoods of classes of analytic functions, Far East J. Math. Sci. 3 (1995), 165-169. (1995) Zbl0935.30009MR1385117
  22. Silverman, H., 10.1006/jmaa.1997.5361, J. Math. Anal. Appl. 209 (1997), 221-227. (1997) Zbl0894.30010MR1444523DOI10.1006/jmaa.1997.5361
  23. Silverman, H., Subclasses of starlike functions, Rev. Roum. Math. Pures Appl. 23 (1978), 1093-1099. (1978) Zbl0389.30005MR0509608
  24. Silverman, H., Silvia, E. M., 10.4153/CJM-1985-004-7, Can. J. Math. 37 (1985), 48-61. (1985) Zbl0574.30015MR0777038DOI10.4153/CJM-1985-004-7
  25. Sohi, N. S., Singh, L. P., A class of bounded starlike functions of complex order, Indian J. Pure Appl. Math. 33 (1991), 29-35. (1991) Zbl0721.30005MR1088617
  26. Srivastava, H. M., Orhan, H., 10.1016/j.aml.2006.07.009, Appl. Math. Lett. 20 (2007), 686-691. (2007) Zbl1111.30012MR2314414DOI10.1016/j.aml.2006.07.009
  27. Srivastava, H. M., (Eds.), S. Owa, Current Topics in Analytic Function Theory, World Scientific Publishing Company Singapore-New Jersey-London-Hong Kong (1992). (1992) Zbl0976.00007MR1232424
  28. Wiatrowski, P., The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Univ. Lodz, Nauki Mat. Przyrod. Ser. II, Zeszyt 39 (1971), 75-85 Polish. (1971) MR0338350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.