Counting irreducible polynomials over finite fields
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 3, page 881-886
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Qichun, and Kan, Haibin. "Counting irreducible polynomials over finite fields." Czechoslovak Mathematical Journal 60.3 (2010): 881-886. <http://eudml.org/doc/38047>.
@article{Wang2010,
abstract = {In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: \[ \pi (x)= \frac\{q\}\{q - 1\}\frac\{x\}\{\{\log \_q x\}\}+ \frac\{q\}\{(q - 1)^2\}\frac\{x\}\{\{\log \_q^2 x\}\}+O\Bigl (\frac\{x\}\{\{\log \_q^3 x\}\}\Bigr ),\quad x=q^n\rightarrow \infty \]
where $\pi (x)$ denotes the number of monic irreducible polynomials in $F_q [t]$ with norm $ \le x$.},
author = {Wang, Qichun, Kan, Haibin},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite fields; distribution of irreducible polynomials; residue; finite fields; distribution of irreducible polynomials; residue},
language = {eng},
number = {3},
pages = {881-886},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Counting irreducible polynomials over finite fields},
url = {http://eudml.org/doc/38047},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Wang, Qichun
AU - Kan, Haibin
TI - Counting irreducible polynomials over finite fields
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 881
EP - 886
AB - In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: \[ \pi (x)= \frac{q}{q - 1}\frac{x}{{\log _q x}}+ \frac{q}{(q - 1)^2}\frac{x}{{\log _q^2 x}}+O\Bigl (\frac{x}{{\log _q^3 x}}\Bigr ),\quad x=q^n\rightarrow \infty \]
where $\pi (x)$ denotes the number of monic irreducible polynomials in $F_q [t]$ with norm $ \le x$.
LA - eng
KW - finite fields; distribution of irreducible polynomials; residue; finite fields; distribution of irreducible polynomials; residue
UR - http://eudml.org/doc/38047
ER -
References
top- Kruse, M., Stichtenoth, H., 10.1007/BF02567920, Manuscripta Math. 69 (1990), 219-221 German. (1990) MR1078353DOI10.1007/BF02567920
- Davenport, H., Multiplicative Number Theory, Springer-Verlag New York (1980). (1980) Zbl0453.10002MR0606931
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.