On the behavior near the origin of double sine series with monotone coefficients
Mathematica Bohemica (2009)
- Volume: 134, Issue: 3, page 255-273
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKrasniqi, Xhevat Z.. "On the behavior near the origin of double sine series with monotone coefficients." Mathematica Bohemica 134.3 (2009): 255-273. <http://eudml.org/doc/38091>.
@article{Krasniqi2009,
abstract = {In this paper we obtain estimates of the sum of double sine series near the origin, with monotone coefficients tending to zero. In particular (if the coefficients $a_\{k,l\}$ satisfy certain conditions) the following order equality is proved \[ g(x,y)\sim mna\_\{m,n\}+\frac\{m\}\{n\}\sum \_\{l=1\}^\{n-1\}la\_\{m,l\}+\frac\{n\}\{m\}\sum \_\{k=1\}^\{m-1\}ka\_\{k,n\}+\frac\{1\}\{mn\}\sum \_\{l=1\}^\{n-1\}\sum \_\{k=1\}^\{m-1\}kla\_\{k,l\}, \]
where $x\in (\frac\{\pi \}\{m+1\}, \frac\{\pi \}\{m\}]$, $ y\in (\frac\{\pi \}\{n+1\}, \frac\{\pi \}\{n\}]$, $ m, n=1,2,\dots $.},
author = {Krasniqi, Xhevat Z.},
journal = {Mathematica Bohemica},
keywords = {double sine series; sum of a double sine series with monotone coefficients; double sine series; sum of a double sine series with monotone coefficients},
language = {eng},
number = {3},
pages = {255-273},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the behavior near the origin of double sine series with monotone coefficients},
url = {http://eudml.org/doc/38091},
volume = {134},
year = {2009},
}
TY - JOUR
AU - Krasniqi, Xhevat Z.
TI - On the behavior near the origin of double sine series with monotone coefficients
JO - Mathematica Bohemica
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 134
IS - 3
SP - 255
EP - 273
AB - In this paper we obtain estimates of the sum of double sine series near the origin, with monotone coefficients tending to zero. In particular (if the coefficients $a_{k,l}$ satisfy certain conditions) the following order equality is proved \[ g(x,y)\sim mna_{m,n}+\frac{m}{n}\sum _{l=1}^{n-1}la_{m,l}+\frac{n}{m}\sum _{k=1}^{m-1}ka_{k,n}+\frac{1}{mn}\sum _{l=1}^{n-1}\sum _{k=1}^{m-1}kla_{k,l}, \]
where $x\in (\frac{\pi }{m+1}, \frac{\pi }{m}]$, $ y\in (\frac{\pi }{n+1}, \frac{\pi }{n}]$, $ m, n=1,2,\dots $.
LA - eng
KW - double sine series; sum of a double sine series with monotone coefficients; double sine series; sum of a double sine series with monotone coefficients
UR - http://eudml.org/doc/38091
ER -
References
top- Young, W. H., On the mode of oscillation of a Fourier series and of its allied series, Proc. London Math. Soc. 12 (1913), 433-452 4.0301.02. (1913)
- Salem, R., Détermination de l'ordre de grandeur à l'origine de certains séries trigonométriques, C. R. Acad. Sci. Paris 186 (1928), 1804-1806 4.0313.01. (1928)
- Salem, R., Essais sur les séries trigonométriques, Paris (1940) 6.1235.02. Zbl0027.20901MR0002656
- Hartman, Ph., Wintner, A., 10.1112/jlms/s1-28.1.102, J. London Math. Soc. 28 (1953), 102-104. (1953) Zbl0050.07206MR0051959DOI10.1112/jlms/s1-28.1.102
- Shogunbekov, Sh. Sh., Certain estimates for sine series with convex coefficients, Russian Primenenie Funkcional'nogo analiza v teorii priblizhenii, Tver' (1993), 67-72. (1993)
- Aljančić, S., Bojanić, R., Tomić, M., Sur le comportement asymptotique au voisinage de zéro des séries trigonométriques de sinus à coefficients monotones, Publ. Inst. Math. Acad. Serie Sci. 10 (1956), 101-120. (1956) MR0082579
- Krasniqi, Xh. Z., Braha, N. L., On the behavior of -th derivative near the origin of sine series with convex coefficients, J. Inequal. Pure Appl. Math. 8 (2007), 1, Paper No. 22 (electronic only), 6 pp., http://jipam.vu.edu.au. (2007) MR2295716
- Telyakovskiǐ, S. A., On the behavior near the origin of the sine series with convex coefficients, Publ. Inst. Math. Nouvelle Sér. 58 (1995), 43-50. (1995) MR1396113
- Popov, A. Yu., 10.1023/B:MATN.0000009019.66625.fb, Mathematical Notes 74 (2003), 829-840. (2003) Zbl1156.42303MR2054006DOI10.1023/B:MATN.0000009019.66625.fb
- Hardy, H. G., On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters, Quarterly J. Math. 37 (1906), 53-79 (Collected Papers: Vol. IV, pp. 433-459). (1906)
- Wittaker, E. T., Watson, G. N., A course of modern analysis I, Nauka Moskva (1963), Russian. (1963)
- Vukolova, T. M., Dyachenko, M. I., Bounds for norms of sums of double trigonometric series with multiply monotone coefficients, Russ. Math. (1994), 38 18-26. (1994) MR1317218
- Vukolova, T. M., Dyachenko, M. I., On the properties of sums of trigonometric series with monotone coefficients, Mosc. Univ. Math. Bull. (1995), 50 19-27. (1995) Zbl0881.42004MR1376350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.