Mildly ( 1 , 2 ) * -normal spaces and some bitopological functions

K. Kayathri; O. Ravi; M. L. Thivagar; M. Joseph Israel

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 1, page 1-13
  • ISSN: 0862-7959

Abstract

top
The aim of the paper is to introduce and study a new class of spaces called mildly ( 1 , 2 ) * -normal spaces and a new class of functions called ( 1 , 2 ) * - rg -continuous, ( 1 , 2 ) * - R -map, almost ( 1 , 2 ) * -continuous function and almost ( 1 , 2 ) * - rg -closed function in bitopological spaces. Subsequently, the relationships between mildly ( 1 , 2 ) * -normal spaces and the new bitopological functions are investigated. Moreover, we obtain characterizations of mildly ( 1 , 2 ) * -normal spaces, properties of the new bitopological functions and preservation theorems for mildly ( 1 , 2 ) * -normal spaces in bitopological spaces.

How to cite

top

Kayathri, K., et al. "Mildly ($1,2)^*$-normal spaces and some bitopological functions." Mathematica Bohemica 135.1 (2010): 1-13. <http://eudml.org/doc/38106>.

@article{Kayathri2010,
abstract = {The aim of the paper is to introduce and study a new class of spaces called mildly $(1,2)^*$-normal spaces and a new class of functions called $(1,2)^*$-$\mathop \{\rm rg\}$-continuous, $(1,2)^*$-$\{\rm R\}$-map, almost $(1,2)^*$-continuous function and almost $(1,2)^*$-$\{\rm rg\}$-closed function in bitopological spaces. Subsequently, the relationships between mildly $(1,2)^*$-normal spaces and the new bitopological functions are investigated. Moreover, we obtain characterizations of mildly $(1,2)^*$-normal spaces, properties of the new bitopological functions and preservation theorems for mildly $(1,2)^*$-normal spaces in bitopological spaces.},
author = {Kayathri, K., Ravi, O., Thivagar, M. L., Israel, M. Joseph},
journal = {Mathematica Bohemica},
keywords = {mildly $(1,2)^*$-normal space; $(1,2)^*$-$\{\rm rg\}$-closed set; $(1,2)^*$-$\{\rm rg\}$-continuous function; almost $(1,2)^*$-continuous function; almost $(1,2)^*$-$\{\rm rg\}$-closed function; mildly -normal space; --closed set; --continuous function; almost -continuous function; almost --closed function},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mildly ($1,2)^*$-normal spaces and some bitopological functions},
url = {http://eudml.org/doc/38106},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Kayathri, K.
AU - Ravi, O.
AU - Thivagar, M. L.
AU - Israel, M. Joseph
TI - Mildly ($1,2)^*$-normal spaces and some bitopological functions
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 1
SP - 1
EP - 13
AB - The aim of the paper is to introduce and study a new class of spaces called mildly $(1,2)^*$-normal spaces and a new class of functions called $(1,2)^*$-$\mathop {\rm rg}$-continuous, $(1,2)^*$-${\rm R}$-map, almost $(1,2)^*$-continuous function and almost $(1,2)^*$-${\rm rg}$-closed function in bitopological spaces. Subsequently, the relationships between mildly $(1,2)^*$-normal spaces and the new bitopological functions are investigated. Moreover, we obtain characterizations of mildly $(1,2)^*$-normal spaces, properties of the new bitopological functions and preservation theorems for mildly $(1,2)^*$-normal spaces in bitopological spaces.
LA - eng
KW - mildly $(1,2)^*$-normal space; $(1,2)^*$-${\rm rg}$-closed set; $(1,2)^*$-${\rm rg}$-continuous function; almost $(1,2)^*$-continuous function; almost $(1,2)^*$-${\rm rg}$-closed function; mildly -normal space; --closed set; --continuous function; almost -continuous function; almost --closed function
UR - http://eudml.org/doc/38106
ER -

References

top
  1. Arya, S. P., Gupta, R., On strongly continuous mappings, Kyungpook Math. J. 14 (1974), 131-143. (1974) Zbl0328.54006MR0407795
  2. Arya, S. P., Nour, T., Characterizations of s -normal spaces, Indian J. Pure Appl. Math. 21 (1990), 717-719. (1990) Zbl0706.54021MR1069994
  3. Dontchev, J., Noiri, T., 10.1023/A:1010607824929, Acta Math. Hungar. 89 (2000), 211-219. (2000) Zbl0973.54013MR1912602DOI10.1023/A:1010607824929
  4. Ekici, E., On γ normal spaces, Bull. Math. Soc. Sci. Math. Roumanie 50 (2007), 259-272. (2007) Zbl1150.54023MR2354467
  5. Naschie, M. S. El, On the uncertainty of Cantorian geometry and two slit experiment, Chaos, Soliton and Fractals 9 (1998), 15-31. (1998) MR1625647
  6. Naschie, M. S. El, 10.1016/j.chaos.2003.08.009, Chaos, Soliton and Fractals 19 (2004), 1339-1344. (2004) Zbl1075.83513DOI10.1016/j.chaos.2003.08.009
  7. Ganster, M., Jafari, S., Navalagi, G. B., On semi- g -regular and semi- g -normal spaces, Demonstratio Math. 35 (2002), 415-421. (2002) Zbl1026.54013MR1907314
  8. Khalimsky, E. D., Applications of connected ordered topological spaces in topology, Conference of Mathematics Department of Povolsia, 1970. 
  9. Khalimsky, E. D., Kopperman, R., Meyer, P. R., 10.1016/0166-8641(90)90031-V, Topol. Appl. 36 (1990), 1-17. (1990) Zbl0709.54017MR1062180DOI10.1016/0166-8641(90)90031-V
  10. Kohli, J. K., Das, A. K., New normality axioms and decompositions of normality, Glasnik Mat. 37 (2002), 163-173. (2002) Zbl1042.54014MR1918103
  11. Kong, T. Y., Kopperman, R., Meyer, P. R., 10.2307/2324147, Am. Math. Month. 98 (1991), 901-917. (1991) Zbl0761.54036MR1137537DOI10.2307/2324147
  12. Kovalevsky, V., Kopperman, R., 10.1111/j.1749-6632.1994.tb44143.x, Ann. NY Acad Sci. 728 (1994), 174-182. (1994) Zbl0913.68216MR1467772DOI10.1111/j.1749-6632.1994.tb44143.x
  13. Levine, N., 10.1007/BF02843888, Rend. Circ. Mat. Palermo 19 (1970), 89-96. (1970) Zbl0231.54001MR0305341DOI10.1007/BF02843888
  14. Maheshwari, S. N., Prasad, R., On s -normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 22 (1978), 27-29. (1978) Zbl0373.54016MR0482656
  15. Malghan, S. R., Generalized closed maps, J. Karnataka Univ. Sci. 27 (1982), 82-88. (1982) Zbl0578.54008MR0773568
  16. Noiri, T., A note on mildly normal spaces, Kyungpook Math. J. 13 (1973), 225-228. (1973) Zbl0283.54011MR0339074
  17. Noiri, T., Mildly normal spaces and some functions, Kyungpook Math. J. 36 (1996), 183-190. (1996) Zbl0873.54016MR1396023
  18. Noiri, T., Super continuity and some strong forms of continuity, Indian J. Pure Appl. Math. 15 (1984), 241-250. (1984) Zbl0546.54016MR0737147
  19. Noiri, T., 10.1023/A:1006576826569, Acta Math. Hungar. 80 (1998), 105-113. (1998) Zbl0909.54016MR1624546DOI10.1023/A:1006576826569
  20. Noiri, T., 10.1007/BF01875158, Acta Math. Hungar. 65 (1994), 305-311. (1994) Zbl0858.54019MR1281440DOI10.1007/BF01875158
  21. Palaniappan, N., Rao, K. C., Regular generalized closed sets, Kyungpook Math. J. 33 (1993), 211-219. (1993) Zbl0794.54002MR1253673
  22. Park, J. K., Park, J. H., 10.1016/j.chaos.2003.09.025, Chaos, Solitons and Fractals 20 (2004), 1103-1111. (2004) Zbl1053.54502MR2030343DOI10.1016/j.chaos.2003.09.025
  23. Paul, Bhattacharyya, On p-normal spaces, Soochow J. Math. 21 (1995), 273-289. (1995) 
  24. Ravi, O., Thivagar, M. L., On stronger forms of ( 1 , 2 ) * -quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra 14 (2004), 481-492. (2004) Zbl1129.54310MR2174909
  25. Ravi, O., Thivagar, M. L., Jinli, Jin, Remarks on extensions of ( 1 , 2 ) * - g -closed mappings in bitopological spaces (submitted), . 
  26. Ravi, O., Thivagar, M. L., Remarks on λ -irresolute functions via ( 1 , 2 ) * -sets, (submitted), . 
  27. Ravi, O., Thivagar, M. L., Ekici, E., Decompositions of bitopological ( 1 , 2 ) * -continuity and complete ( 1 , 2 ) * -continuity, Analele Universitatii Din Oradea-Fascicola Mathematica 15 (2008), 29-37. (2008) Zbl1148.54324MR2422468
  28. Ravi, O., Kayathri, K., Thivagar, M. L., Israel, M. Joseph, On ( 1 , 2 ) * -sets and weakly generalized ( 1 , 2 ) * -continuous maps in bitopological spaces (submitted), . 
  29. Singal, M. K., Arya, S. P., On almost-regular spaces, Glasnik Mat. 4 (1969), 89-99. (1969) Zbl0169.24902MR0243483
  30. Singal, M. K., Singal, A. R., Almost-continuous mappings, Yokohama Math. J. 16 (1968), 63-73. (1968) Zbl0191.20802MR0261569
  31. Singal, M. K., Singal, A. R., Mildly normal spaces, Kyungpook Math. J. 13 (1973), 27-31. (1973) Zbl0266.54006MR0362215
  32. Singal, M. K., Arya, S. P., On almost normal and almost completely regular spaces, Glasnik Mat. 5 (1970), 141-152. (1970) MR0275354
  33. Vigilino, G., 10.1215/S0012-7094-71-03808-7, Duke J. Math. 38 (1971), 57-61. (1971) DOI10.1215/S0012-7094-71-03808-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.