Existence of multiple positive solutions of -order -point boundary value problems
Mathematica Bohemica (2010)
- Volume: 135, Issue: 1, page 15-28
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLiang, Sihua, and Zhang, Jihui. "Existence of multiple positive solutions of $n{\rm th}$-order $m$-point boundary value problems." Mathematica Bohemica 135.1 (2010): 15-28. <http://eudml.org/doc/38107>.
@article{Liang2010,
abstract = {The paper deals with the existence of multiple positive solutions for the boundary value problem \[ \{\left\lbrace \begin\{array\}\{ll\} (\varphi (p(t)u^\{(n-1)\})(t))^\{\prime \} + a(t)f(t, u(t), u^\{\prime \}(t), \ldots , u^\{(n-2)\}(t)) = 0, \quad \ 0 < t < 1, \\ u^\{(i)\}(0) = 0, \quad i = 0, 1, \ldots , n - 3,\\ u^\{(n-2)\}(0) = \sum \_\{i=1\}^\{m-2\}\alpha \_iu^\{(n-2)\}(\xi \_i),\quad u^\{(n-1)\}(1) = 0, \end\{array\}\right.\} \]
where $\varphi \colon \mathbb \{R\} \rightarrow \mathbb \{R\}$ is an increasing homeomorphism and a positive homomorphism with $\varphi (0) = 0$. Using a fixed-point theorem for operators on a cone, we provide sufficient conditions for the existence of multiple positive solutions to the above boundary value problem.},
author = {Liang, Sihua, Zhang, Jihui},
journal = {Mathematica Bohemica},
keywords = {boundary-value problems; positive solutions; fixed-point theorem; cone; boundary-value problem; positive solution; fixed-point theorem; cone},
language = {eng},
number = {1},
pages = {15-28},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of multiple positive solutions of $n\{\rm th\}$-order $m$-point boundary value problems},
url = {http://eudml.org/doc/38107},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Liang, Sihua
AU - Zhang, Jihui
TI - Existence of multiple positive solutions of $n{\rm th}$-order $m$-point boundary value problems
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 1
SP - 15
EP - 28
AB - The paper deals with the existence of multiple positive solutions for the boundary value problem \[ {\left\lbrace \begin{array}{ll} (\varphi (p(t)u^{(n-1)})(t))^{\prime } + a(t)f(t, u(t), u^{\prime }(t), \ldots , u^{(n-2)}(t)) = 0, \quad \ 0 < t < 1, \\ u^{(i)}(0) = 0, \quad i = 0, 1, \ldots , n - 3,\\ u^{(n-2)}(0) = \sum _{i=1}^{m-2}\alpha _iu^{(n-2)}(\xi _i),\quad u^{(n-1)}(1) = 0, \end{array}\right.} \]
where $\varphi \colon \mathbb {R} \rightarrow \mathbb {R}$ is an increasing homeomorphism and a positive homomorphism with $\varphi (0) = 0$. Using a fixed-point theorem for operators on a cone, we provide sufficient conditions for the existence of multiple positive solutions to the above boundary value problem.
LA - eng
KW - boundary-value problems; positive solutions; fixed-point theorem; cone; boundary-value problem; positive solution; fixed-point theorem; cone
UR - http://eudml.org/doc/38107
ER -
References
top- Agarwal, R. P., O'Regan, D., 10.1006/jdeq.2000.3808, J. Differ. Equations 170 142-156 (2001). (2001) MR1813103DOI10.1006/jdeq.2000.3808
- Bai, C., Fang, J., 10.1016/S0096-3003(02)00227-8, Appl. Math. Comput. 140 (2003), 297-305. (2003) MR1953901DOI10.1016/S0096-3003(02)00227-8
- Baxley, J. V., 10.1016/0022-247X(90)90388-V, J. Math. Anal. Appl. 147 (1990), 122-133. (1990) MR1044690DOI10.1016/0022-247X(90)90388-V
- Deimling, K., Nonlinear Functional Analysis, Springer, New York (1985). (1985) Zbl0559.47040MR0787404
- Feng, W., Webb, J. R. L., 10.1006/jmaa.1997.5520, J. Math. Anal. Appl. 212 (1997), 467-480. (1997) MR1464891DOI10.1006/jmaa.1997.5520
- Il'in, V. A., Moiseev, E. I., Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differ. Equations 23 (1987), 979-987. (1987)
- al, P. Kelevedjiev et, Another understanding of fourth-order four-point boundary-value problems, Electron. J. Differ. Equ., Paper No. 47 (2008), 1-15. (2008) MR2392951
- Kong, L., Kong, Q., 10.1016/j.jmaa.2006.08.064, J. Math. Anal. Appl. 330 (2007), 1393-1411. (2007) Zbl1119.34009MR2308449DOI10.1016/j.jmaa.2006.08.064
- Lan, K. Q., 10.1112/S002461070100206X, J. London Math. Soc. 63 (2001), 690-704. (2001) Zbl1032.34019MR1825983DOI10.1112/S002461070100206X
- Liang, S. H., Zhang, J. H., 10.1016/j.cam.2007.02.020, J. Comput. Appl. Math. 214 (2008), 78-89. (2008) Zbl1183.34031MR2391674DOI10.1016/j.cam.2007.02.020
- Liu, B. F., Zhang, J. H., 10.1016/j.jmaa.2004.09.036, J. Math. Anal. Appl. 309 (2005), 505-516. (2005) Zbl1086.34022MR2154132DOI10.1016/j.jmaa.2004.09.036
- Liu, Yuji, Non-homogeneous boundary-value problems of higher order differential equations with -Laplacian, Electron J. Differ. Equ., Paper No. 20 (2008), 1-43. (2008) Zbl1139.34012MR2383384
- Wang, J. Y., 10.1090/S0002-9939-97-04148-8, Proc. Amer. Math. Soc. 125 (1997), 2275-2283. (1997) Zbl0884.34032MR1423340DOI10.1090/S0002-9939-97-04148-8
- Wang, Y., Ge, W., Existence of multiple positive solutions for multi-point boundary value problems with a one-dimensional -Laplacian, Nonlinear Anal., Theory Methods Appl. 67 (2007), 476-485. (2007) MR2317182
- Wang, Y., Hou, C., 10.1016/j.jmaa.2005.09.085, J. Math. Anal. Appl. 315 (2006), 144-153. (2006) Zbl1098.34017MR2196536DOI10.1016/j.jmaa.2005.09.085
- Webb, J. R. L., 10.1016/S0362-546X(01)00547-8, Nonlinear Anal. 47 (2001), 4319-4332. (2001) Zbl1042.34527MR1975828DOI10.1016/S0362-546X(01)00547-8
- Zhou, Y. M., Su, H., Positive solutions of four-point boundary value problems for higher-order with -Laplacian operator, Electron. J. Differ. Equ., Paper No. 05 1-14 (2007). (2007) Zbl1118.34021MR2278419
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.