Volterra summation equations and second order difference equations

Jarosław Morchało

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 1, page 41-56
  • ISSN: 0862-7959

Abstract

top
The asymptotic and oscillatory behavior of solutions of Volterra summation equation and second order linear difference equation are studied.

How to cite

top

Morchało, Jarosław. "Volterra summation equations and second order difference equations." Mathematica Bohemica 135.1 (2010): 41-56. <http://eudml.org/doc/38109>.

@article{Morchało2010,
abstract = {The asymptotic and oscillatory behavior of solutions of Volterra summation equation and second order linear difference equation are studied.},
author = {Morchało, Jarosław},
journal = {Mathematica Bohemica},
keywords = {Volterra summation equations; second order difference equations; Volterra summation equation; second order linear difference equation; oscillation; asymptotic},
language = {eng},
number = {1},
pages = {41-56},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Volterra summation equations and second order difference equations},
url = {http://eudml.org/doc/38109},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Morchało, Jarosław
TI - Volterra summation equations and second order difference equations
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 1
SP - 41
EP - 56
AB - The asymptotic and oscillatory behavior of solutions of Volterra summation equation and second order linear difference equation are studied.
LA - eng
KW - Volterra summation equations; second order difference equations; Volterra summation equation; second order linear difference equation; oscillation; asymptotic
UR - http://eudml.org/doc/38109
ER -

References

top
  1. Agarwal, A. P., Difference Equations and Inequalities, Marcel Dekker, New York (1992). (1992) Zbl0925.39001MR1155840
  2. Agarwal, A. P., Wong, P. I. Y., Advanced Topics in Difference Equations, Kluwer, Dordrecht (1997). (1997) Zbl0878.39001
  3. Agarwal, A. P., Domoshnitsky, A., 10.1016/j.amc.2005.02.062, Appl. Math. Comput. 173 (2006), 177-195. (2006) MR2203380DOI10.1016/j.amc.2005.02.062
  4. Domoshnitsky, A., Drakhlin, M., Stavroulakis, I. P., 10.1016/j.mcm.2004.02.043, Math. Comput. Modelling 42 (2005), 193-205. (2005) MR2162397DOI10.1016/j.mcm.2004.02.043
  5. Graef, J. R., Thandapani, E., 10.1016/S0893-9659(99)00105-6, Appl. Math. Lett. 12 (1999), 79-84. (1999) MR1750064DOI10.1016/S0893-9659(99)00105-6
  6. Morchało, J., Asymptotic properties of solutions of discrete Volterra equations, Math. Slovaca 52 (2002), 47-56. (2002) MR1901013
  7. Morchało, J., Szmanda, A., 10.1016/j.na.2005.02.007, Nonlinear Anal. 63 (2005), 801-811. (2005) Zbl1224.39022MR2643354DOI10.1016/j.na.2005.02.007
  8. Polniakowski, Z., 10.4064/ap-5-1-1-24, Annales Polonici Mathematici 5 (1958), 1-24. (1958) Zbl0082.27401MR0100742DOI10.4064/ap-5-1-1-24
  9. Thandapani, E., Lalli, B. S., 10.1016/0893-9659(94)90060-4, Appl. Math. Lett. 7 (1994), 89-93. (1994) MR1349901DOI10.1016/0893-9659(94)90060-4
  10. Thandapani, E., Ravi, K., On the oscillation of Volterra summation equations, Math. Bohem. 126 (2001), 41-52. (2001) Zbl0982.39005MR1825856

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.