On some singular systems of parabolic functional equations

László Simon

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 2, page 123-132
  • ISSN: 0862-7959

Abstract

top
We will prove existence of weak solutions of a system, containing non-local terms u , w .

How to cite

top

Simon, László. "On some singular systems of parabolic functional equations." Mathematica Bohemica 135.2 (2010): 123-132. <http://eudml.org/doc/38116>.

@article{Simon2010,
abstract = {We will prove existence of weak solutions of a system, containing non-local terms $u$, $w$. },
author = {Simon, László},
journal = {Mathematica Bohemica},
keywords = {parabolic functional equation; singular system; monotone type operator; parabolic functional equation; singular system; monotone type operator},
language = {eng},
number = {2},
pages = {123-132},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some singular systems of parabolic functional equations},
url = {http://eudml.org/doc/38116},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Simon, László
TI - On some singular systems of parabolic functional equations
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 2
SP - 123
EP - 132
AB - We will prove existence of weak solutions of a system, containing non-local terms $u$, $w$.
LA - eng
KW - parabolic functional equation; singular system; monotone type operator; parabolic functional equation; singular system; monotone type operator
UR - http://eudml.org/doc/38116
ER -

References

top
  1. Adams, R. A., Sobolev Spaces, Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
  2. Amann, H., Highly degenerate quasilinear parabolic systems, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 136-166. (1991) Zbl0738.35029MR1118224
  3. Berkovits, J., Mustonen, V., Topological degreee for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems, Rend. Mat. Appl. VII. 12 (1992), 597-621. (1992) MR1205967
  4. Cinca, S., Diffusion und Transport in porösen Medien bei veränderlichen Porosität, Diplomawork, Univ. Heidelberg (2000). (2000) 
  5. Hu, Bei, Zhang, Jianhua, Global existence for a class of non-Fickian polymer-penetrant systems, J. Part. Diff. Eq. 9 (1996), 193-208. (1996) MR1413446
  6. Logan, J. D., Petersen, M. R., Shores, T. S., 10.1016/S0096-3003(01)00052-2, Appl. Math. Comput. 127 (2002), 149-164. (2002) Zbl1016.86003MR1883122DOI10.1016/S0096-3003(01)00052-2
  7. Merkin, J. H., Needham, D. J., Sleeman, B. D., 10.1088/0951-7715/18/6/018, Nonlinearity 18 (2005), 2745-2773. (2005) Zbl1078.92010MR2176957DOI10.1088/0951-7715/18/6/018
  8. Rivière, B., Shaw, S., 10.1137/05064480X, SIAM J. Numer. Anal. 44 (2006), 2650-2670. (2006) Zbl1135.65036MR2272610DOI10.1137/05064480X
  9. Simon, L., Jäger, W., On non-uniformly parabolic functional differential equations, Stud. Sci. Math. Hung. 45 (2008), 285-300. (2008) Zbl1174.35054MR2417974
  10. Simon, L., 10.1016/S1874-5717(08)00006-6, Handbook of Differential Equations. Evolutionary Equations, Vol. 4, Elsevier (2008), 267-321. (2008) MR2508168DOI10.1016/S1874-5717(08)00006-6
  11. Zeidler, E., Nonlinear Functional Analysis and Its Applications II A and II B, Springer (1990). (1990) MR1033497

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.