On some singular systems of parabolic functional equations
Mathematica Bohemica (2010)
- Volume: 135, Issue: 2, page 123-132
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSimon, László. "On some singular systems of parabolic functional equations." Mathematica Bohemica 135.2 (2010): 123-132. <http://eudml.org/doc/38116>.
@article{Simon2010,
abstract = {We will prove existence of weak solutions of a system, containing non-local terms $u$, $w$. },
author = {Simon, László},
journal = {Mathematica Bohemica},
keywords = {parabolic functional equation; singular system; monotone type operator; parabolic functional equation; singular system; monotone type operator},
language = {eng},
number = {2},
pages = {123-132},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some singular systems of parabolic functional equations},
url = {http://eudml.org/doc/38116},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Simon, László
TI - On some singular systems of parabolic functional equations
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 2
SP - 123
EP - 132
AB - We will prove existence of weak solutions of a system, containing non-local terms $u$, $w$.
LA - eng
KW - parabolic functional equation; singular system; monotone type operator; parabolic functional equation; singular system; monotone type operator
UR - http://eudml.org/doc/38116
ER -
References
top- Adams, R. A., Sobolev Spaces, Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
- Amann, H., Highly degenerate quasilinear parabolic systems, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 136-166. (1991) Zbl0738.35029MR1118224
- Berkovits, J., Mustonen, V., Topological degreee for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems, Rend. Mat. Appl. VII. 12 (1992), 597-621. (1992) MR1205967
- Cinca, S., Diffusion und Transport in porösen Medien bei veränderlichen Porosität, Diplomawork, Univ. Heidelberg (2000). (2000)
- Hu, Bei, Zhang, Jianhua, Global existence for a class of non-Fickian polymer-penetrant systems, J. Part. Diff. Eq. 9 (1996), 193-208. (1996) MR1413446
- Logan, J. D., Petersen, M. R., Shores, T. S., 10.1016/S0096-3003(01)00052-2, Appl. Math. Comput. 127 (2002), 149-164. (2002) Zbl1016.86003MR1883122DOI10.1016/S0096-3003(01)00052-2
- Merkin, J. H., Needham, D. J., Sleeman, B. D., 10.1088/0951-7715/18/6/018, Nonlinearity 18 (2005), 2745-2773. (2005) Zbl1078.92010MR2176957DOI10.1088/0951-7715/18/6/018
- Rivière, B., Shaw, S., 10.1137/05064480X, SIAM J. Numer. Anal. 44 (2006), 2650-2670. (2006) Zbl1135.65036MR2272610DOI10.1137/05064480X
- Simon, L., Jäger, W., On non-uniformly parabolic functional differential equations, Stud. Sci. Math. Hung. 45 (2008), 285-300. (2008) Zbl1174.35054MR2417974
- Simon, L., 10.1016/S1874-5717(08)00006-6, Handbook of Differential Equations. Evolutionary Equations, Vol. 4, Elsevier (2008), 267-321. (2008) MR2508168DOI10.1016/S1874-5717(08)00006-6
- Zeidler, E., Nonlinear Functional Analysis and Its Applications II A and II B, Springer (1990). (1990) MR1033497
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.