Variational inclusions for a Sturm-Liouville type differential inclusion

Aurelian Cernea

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 2, page 171-178
  • ISSN: 0862-7959

Abstract

top
We establish several variational inclusions for solutions of a nonconvex Sturm-Liouville type differential inclusion on a separable Banach space.

How to cite

top

Cernea, Aurelian. "Variational inclusions for a Sturm-Liouville type differential inclusion." Mathematica Bohemica 135.2 (2010): 171-178. <http://eudml.org/doc/38121>.

@article{Cernea2010,
abstract = {We establish several variational inclusions for solutions of a nonconvex Sturm-Liouville type differential inclusion on a separable Banach space.},
author = {Cernea, Aurelian},
journal = {Mathematica Bohemica},
keywords = {variational inclusion; tangent cone; set-valued derivative; variational inclusion; tangent cone; set-valued derivative},
language = {eng},
number = {2},
pages = {171-178},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variational inclusions for a Sturm-Liouville type differential inclusion},
url = {http://eudml.org/doc/38121},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Cernea, Aurelian
TI - Variational inclusions for a Sturm-Liouville type differential inclusion
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 2
SP - 171
EP - 178
AB - We establish several variational inclusions for solutions of a nonconvex Sturm-Liouville type differential inclusion on a separable Banach space.
LA - eng
KW - variational inclusion; tangent cone; set-valued derivative; variational inclusion; tangent cone; set-valued derivative
UR - http://eudml.org/doc/38121
ER -

References

top
  1. Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhäuser, Basel (1990). (1990) Zbl0713.49021MR1048347
  2. Cernea, A., A Filippov type existence theorem for a class of second-order differential inclusions, J. Ineq. Pure Appl. Math. 9 (2008), Paper No. 35. (2008) Zbl1175.34017MR2417317
  3. Chang, Y. K., Li, W. T., 10.1016/j.jmaa.2004.07.041, J. Math. Anal. Appl. 301 (2005), 477-490. (2005) Zbl1067.34083MR2105687DOI10.1016/j.jmaa.2004.07.041
  4. Dunford, N. S., Schwartz, J. T., Linear Operators Part I, General Theory. Wiley Interscience, New York (1958). (1958) MR1009162
  5. Filippov, A. F., 10.1137/0305040, SIAM J. Control Optim. 5 (1967), 609-621. (1967) MR0220995DOI10.1137/0305040
  6. Frankowska, H., 10.1016/0022-0396(90)90129-D, J. Differ. Equations 84 (1990), 100-128. (1990) Zbl0715.49010MR1042661DOI10.1016/0022-0396(90)90129-D
  7. Liu, Y., Wu, J., Li, Z., 10.1007/s11424-007-9032-3, J. Sys. Sci. Complexity 20 (2007), 370-380. (2007) MR2350506DOI10.1007/s11424-007-9032-3

NotesEmbed ?

top

You must be logged in to post comments.