On Hölder regularity for vector-valued minimizers of quasilinear functionals
Mathematica Bohemica (2010)
- Volume: 135, Issue: 2, page 199-207
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDaněček, Josef, and Viszus, Eugen. "On Hölder regularity for vector-valued minimizers of quasilinear functionals." Mathematica Bohemica 135.2 (2010): 199-207. <http://eudml.org/doc/38124>.
@article{Daněček2010,
abstract = {We discuss the interior Hölder everywhere regularity for minimizers of quasilinear functionals of the type \[ \mathcal \{A\}(u;\Omega )=\int \_\{\Omega \} A\_\{ij\}^\{\alpha \beta \}(x,u) D\_\{\alpha \}u^iD\_\{\beta \}u^j\,\{\rm d\}x \]
whose gradients belong to the Morrey space $L^\{2,n-2\}(\Omega ,\mathbb \{R\}^\{nN\})$.},
author = {Daněček, Josef, Viszus, Eugen},
journal = {Mathematica Bohemica},
keywords = {quasilinear functional; minimizer; regularity; Campanato-Morrey space; quasilinear functional; minimizer, regularity; Campanato-Morrey space},
language = {eng},
number = {2},
pages = {199-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Hölder regularity for vector-valued minimizers of quasilinear functionals},
url = {http://eudml.org/doc/38124},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Daněček, Josef
AU - Viszus, Eugen
TI - On Hölder regularity for vector-valued minimizers of quasilinear functionals
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 2
SP - 199
EP - 207
AB - We discuss the interior Hölder everywhere regularity for minimizers of quasilinear functionals of the type \[ \mathcal {A}(u;\Omega )=\int _{\Omega } A_{ij}^{\alpha \beta }(x,u) D_{\alpha }u^iD_{\beta }u^j\,{\rm d}x \]
whose gradients belong to the Morrey space $L^{2,n-2}(\Omega ,\mathbb {R}^{nN})$.
LA - eng
KW - quasilinear functional; minimizer; regularity; Campanato-Morrey space; quasilinear functional; minimizer, regularity; Campanato-Morrey space
UR - http://eudml.org/doc/38124
ER -
References
top- Campanato, S., Sistemi ellittici in forma divergenza. Regolarita all'interno, Quaderni Scuola Norm. Sup. Pisa, Pisa (1980). (1980) Zbl0453.35026MR0668196
- Daněček, J., Viszus, E., 10.1007/s00030-008-7070-8, Nonlinear Differ. Equ. Appl. 16 (2009), 189-211. (2009) MR2497329DOI10.1007/s00030-008-7070-8
- Daněček, J., John, O., Stará, J., 10.4171/ZAA/1372, Z. Anal. Anw. 28 (2009), 57-65. (2009) MR2469716DOI10.4171/ZAA/1372
- Giorgi, E. De, Sulla diferenziabilita e l'analiticita delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. 125 (1957), 25-43. (1957)
- Gironimo, P. Di, Esposito, L., Sgambati, L., 10.1007/s00229-003-0429-6, Manuscripta Math. 113 (2004), 143-151. (2004) MR2128543DOI10.1007/s00229-003-0429-6
- Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies N. 105, Princenton University Press, Princeton, 1983. Zbl0516.49003MR0717034
- Giaquinta, M., Giusti, E., 10.1007/BF02392725, Acta Math. 148 (1982), 31-46. (1982) Zbl0494.49031MR0666107DOI10.1007/BF02392725
- Giaquinta, M., Giusti, E., 10.1007/BF01389324, Invent. Math. 72 (1983), 285-298. (1983) Zbl0513.49003MR0700772DOI10.1007/BF01389324
- Giusti, E., Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana, Officine Grafiche Tecnoprint, Bologna, 1994. Zbl0942.49002MR1707291
- Giusti, E., Miranda, M., Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale di calcolo delle ellitico, Boll. Unione Mat. Ital. 12 (1968), 219-226. (1968) MR0232265
- Kufner, A., John, O., Fučík, S., Function Spaces, Academia, Praha (1977). (1977) MR0482102
- Nečas, J., Stará, J., Principio di massimo per i sistemi ellitici quasilineari non diagonali, Boll. Unione Mat. Ital. 6 (1972), 1-10. (1972) MR0315281
- Sarason, D., 10.1090/S0002-9947-1975-0377518-3, Trans. Amer. Math. Soc. 207 (1975), 391-405. (1975) Zbl0319.42006MR0377518DOI10.1090/S0002-9947-1975-0377518-3
- Šverák, V., Yan, X., 10.1073/pnas.222494699, Proc. Nat. Acad. Sci. USA. 99 (2002), 15269-15276. (2002) Zbl1106.49046MR1946762DOI10.1073/pnas.222494699
- Ziemer, W. P., Weakly Differentiable Functions, Springer, Heidelberg (1989). (1989) Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.