On Hölder regularity for vector-valued minimizers of quasilinear functionals

Josef Daněček; Eugen Viszus

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 2, page 199-207
  • ISSN: 0862-7959

Abstract

top
We discuss the interior Hölder everywhere regularity for minimizers of quasilinear functionals of the type 𝒜 ( u ; Ω ) = Ω A i j α β ( x , u ) D α u i D β u j d x whose gradients belong to the Morrey space L 2 , n - 2 ( Ω , n N ) .

How to cite

top

Daněček, Josef, and Viszus, Eugen. "On Hölder regularity for vector-valued minimizers of quasilinear functionals." Mathematica Bohemica 135.2 (2010): 199-207. <http://eudml.org/doc/38124>.

@article{Daněček2010,
abstract = {We discuss the interior Hölder everywhere regularity for minimizers of quasilinear functionals of the type \[ \mathcal \{A\}(u;\Omega )=\int \_\{\Omega \} A\_\{ij\}^\{\alpha \beta \}(x,u) D\_\{\alpha \}u^iD\_\{\beta \}u^j\,\{\rm d\}x \] whose gradients belong to the Morrey space $L^\{2,n-2\}(\Omega ,\mathbb \{R\}^\{nN\})$.},
author = {Daněček, Josef, Viszus, Eugen},
journal = {Mathematica Bohemica},
keywords = {quasilinear functional; minimizer; regularity; Campanato-Morrey space; quasilinear functional; minimizer, regularity; Campanato-Morrey space},
language = {eng},
number = {2},
pages = {199-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Hölder regularity for vector-valued minimizers of quasilinear functionals},
url = {http://eudml.org/doc/38124},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Daněček, Josef
AU - Viszus, Eugen
TI - On Hölder regularity for vector-valued minimizers of quasilinear functionals
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 2
SP - 199
EP - 207
AB - We discuss the interior Hölder everywhere regularity for minimizers of quasilinear functionals of the type \[ \mathcal {A}(u;\Omega )=\int _{\Omega } A_{ij}^{\alpha \beta }(x,u) D_{\alpha }u^iD_{\beta }u^j\,{\rm d}x \] whose gradients belong to the Morrey space $L^{2,n-2}(\Omega ,\mathbb {R}^{nN})$.
LA - eng
KW - quasilinear functional; minimizer; regularity; Campanato-Morrey space; quasilinear functional; minimizer, regularity; Campanato-Morrey space
UR - http://eudml.org/doc/38124
ER -

References

top
  1. Campanato, S., Sistemi ellittici in forma divergenza. Regolarita all'interno, Quaderni Scuola Norm. Sup. Pisa, Pisa (1980). (1980) Zbl0453.35026MR0668196
  2. Daněček, J., Viszus, E., 10.1007/s00030-008-7070-8, Nonlinear Differ. Equ. Appl. 16 (2009), 189-211. (2009) MR2497329DOI10.1007/s00030-008-7070-8
  3. Daněček, J., John, O., Stará, J., 10.4171/ZAA/1372, Z. Anal. Anw. 28 (2009), 57-65. (2009) MR2469716DOI10.4171/ZAA/1372
  4. Giorgi, E. De, Sulla diferenziabilita e l'analiticita delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. 125 (1957), 25-43. (1957) 
  5. Gironimo, P. Di, Esposito, L., Sgambati, L., 10.1007/s00229-003-0429-6, Manuscripta Math. 113 (2004), 143-151. (2004) MR2128543DOI10.1007/s00229-003-0429-6
  6. Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies N. 105, Princenton University Press, Princeton, 1983. Zbl0516.49003MR0717034
  7. Giaquinta, M., Giusti, E., 10.1007/BF02392725, Acta Math. 148 (1982), 31-46. (1982) Zbl0494.49031MR0666107DOI10.1007/BF02392725
  8. Giaquinta, M., Giusti, E., 10.1007/BF01389324, Invent. Math. 72 (1983), 285-298. (1983) Zbl0513.49003MR0700772DOI10.1007/BF01389324
  9. Giusti, E., Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana, Officine Grafiche Tecnoprint, Bologna, 1994. Zbl0942.49002MR1707291
  10. Giusti, E., Miranda, M., Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale di calcolo delle ellitico, Boll. Unione Mat. Ital. 12 (1968), 219-226. (1968) MR0232265
  11. Kufner, A., John, O., Fučík, S., Function Spaces, Academia, Praha (1977). (1977) MR0482102
  12. Nečas, J., Stará, J., Principio di massimo per i sistemi ellitici quasilineari non diagonali, Boll. Unione Mat. Ital. 6 (1972), 1-10. (1972) MR0315281
  13. Sarason, D., 10.1090/S0002-9947-1975-0377518-3, Trans. Amer. Math. Soc. 207 (1975), 391-405. (1975) Zbl0319.42006MR0377518DOI10.1090/S0002-9947-1975-0377518-3
  14. Šverák, V., Yan, X., 10.1073/pnas.222494699, Proc. Nat. Acad. Sci. USA. 99 (2002), 15269-15276. (2002) Zbl1106.49046MR1946762DOI10.1073/pnas.222494699
  15. Ziemer, W. P., Weakly Differentiable Functions, Springer, Heidelberg (1989). (1989) Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.