Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval
Roman Šimon Hilscher; Petr Zemánek
Mathematica Bohemica (2010)
- Volume: 135, Issue: 2, page 209-222
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topHilscher, Roman Šimon, and Zemánek, Petr. "Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval." Mathematica Bohemica 135.2 (2010): 209-222. <http://eudml.org/doc/38125>.
@article{Hilscher2010,
abstract = {In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations.},
author = {Hilscher, Roman Šimon, Zemánek, Petr},
journal = {Mathematica Bohemica},
keywords = {linear Hamiltonian system; Friedrichs extension; self-adjoint operator; recessive solution; quadratic functional; positivity conjoined basis; linear Hamiltonian system; Friedrichs extension; selfadjoint operator; recessive solution; quadratic functional; positivity conjoined basis},
language = {eng},
number = {2},
pages = {209-222},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval},
url = {http://eudml.org/doc/38125},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Hilscher, Roman Šimon
AU - Zemánek, Petr
TI - Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 2
SP - 209
EP - 222
AB - In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations.
LA - eng
KW - linear Hamiltonian system; Friedrichs extension; self-adjoint operator; recessive solution; quadratic functional; positivity conjoined basis; linear Hamiltonian system; Friedrichs extension; selfadjoint operator; recessive solution; quadratic functional; positivity conjoined basis
UR - http://eudml.org/doc/38125
ER -
References
top- Ahlbrandt, C. D., 10.1216/RMJ-1972-2-2-169, Rocky Mountain J. Math. 2 (1972), 169-182. (1972) MR0296388DOI10.1216/RMJ-1972-2-2-169
- Baxley, J. V., The Friedrichs extension of certain singular differential operators, Duke Math. J. 35 (1968), 455-462. (1968) Zbl0174.45701MR0226446
- Brown, B. M., Christiansen, J. S., 10.1016/j.exmath.2005.01.020, Expo. Math. 23 (2005), 179-186. (2005) Zbl1078.39019MR2155010DOI10.1016/j.exmath.2005.01.020
- Došlý, O., Principal and nonprincipal solutions of symplectic dynamic systems on time scales, Electron. J. Qual. Theory Differ. Equ. 2000, Suppl. No. 5, 14 p., electronic only. MR1798655
- Došlý, O., Hasil, P., Friedrichs extension of operators defined by symmetric banded matrices, Linear Algebra Appl. 430 (2009), 1966-1975. (2009) Zbl1171.39004MR2503945
- Freudenthal, H., Über die Friedrichssche Fortsetzung halbbeschränkter Hermitescher Operatoren, {German} Proc. Akad. Wet. Amsterdam 39 (1936), 832-833. (1936) Zbl0015.25904
- Friedrichs, K., 10.1007/BF01449150, German Math. Ann. 109 (1934), 465-487. (1934) Zbl0009.07205MR1512905DOI10.1007/BF01449150
- Friedrichs, K., 10.1007/BF01449164, German Math. Ann. 109 (1934), 685-713. (1934) MR1512919DOI10.1007/BF01449164
- Friedrichs, K., 10.1007/BF01565401, German Math. Ann. 112 (1936), 1-23. (1936) MR1513033DOI10.1007/BF01565401
- Kalf, H., 10.1112/jlms/s2-17.3.511, J. London Math. Soc. 17 (1978), 511-521. (1978) Zbl0406.34029MR0492493DOI10.1112/jlms/s2-17.3.511
- Kratz, W., Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin (1995). (1995) Zbl0842.49001MR1334092
- Marletta, M., Zettl, A., 10.1006/jdeq.1999.3685, J. Differential Equations 160 (2000), 404-421. (2000) Zbl0954.47012MR1736997DOI10.1006/jdeq.1999.3685
- Möller, M., Zettl, A., 10.1006/jdeq.1995.1003, J. Differential Equations 115 (1995), 50-69. (1995) MR1308604DOI10.1006/jdeq.1995.1003
- Niessen, H. D., Zettl, A., The Friedrichs extension of regular ordinary differential operators, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 229-236. (1990) Zbl0712.34020MR1055546
- Niessen, H. D., Zettl, A., Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues, Proc. London Math. Soc. 64 (1992), 545-578. (1992) Zbl0768.34015MR1152997
- Reid, W. T., Ordinary Differential Equations, Wiley, New York (1971). (1971) Zbl0212.10901MR0273082
- Rellich, F., 10.1007/BF01342848, German Math. Ann. 122 (1951), 343-368. (1951) Zbl0044.31201MR0043316DOI10.1007/BF01342848
- Rosenberger, R., 10.1112/jlms/s2-31.3.501, J. London Math. Soc. 31 (1985), 501-510. (1985) Zbl0615.34019MR0812779DOI10.1112/jlms/s2-31.3.501
- Wang, A., Sun, J., Zettl, A., 10.1016/j.jde.2008.11.001, J. Differential Equations 246 (2009), 1600-1622. (2009) Zbl1169.47033MR2488698DOI10.1016/j.jde.2008.11.001
- Zettl, A., On the Friedrichs extension of singular differential operators, Commun. Appl. Anal. 2 (1998), 31-36. (1998) Zbl0895.34018MR1612893
- Zettl, A., Sturm-Liouville Theory, Mathematical Surveys and Monographs, Vol. 121, American Mathematical Society, Providence, RI (2005). (2005) Zbl1103.34001MR2170950
- Zheng, Z., Chen, S., 10.1016/j.amc.2006.05.041, Appl. Math. Comput. 182 (2006), 1514-1527. (2006) Zbl1118.47038MR2282593DOI10.1016/j.amc.2006.05.041
- Zheng, Z., Qi, J., Chen, S., 10.1016/j.camwa.2008.05.043, Comput. Math. Appl. 56 (2008), 2825-2833. (2008) Zbl1165.34425MR2467672DOI10.1016/j.camwa.2008.05.043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.