Li-Yorke pairs of full Hausdorff dimension for some chaotic dynamical systems

J. Neunhäuserer

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 3, page 279-289
  • ISSN: 0862-7959

Abstract

top
We show that for some simple classical chaotic dynamical systems the set of Li-Yorke pairs has full Hausdorff dimension on invariant sets.

How to cite

top

Neunhäuserer, J.. "Li-Yorke pairs of full Hausdorff dimension for some chaotic dynamical systems." Mathematica Bohemica 135.3 (2010): 279-289. <http://eudml.org/doc/38130>.

@article{Neunhäuserer2010,
abstract = {We show that for some simple classical chaotic dynamical systems the set of Li-Yorke pairs has full Hausdorff dimension on invariant sets.},
author = {Neunhäuserer, J.},
journal = {Mathematica Bohemica},
keywords = {Li-Yorke chaos; Hausdorff dimension; Li-Yorke chaos; Hausdorff dimension},
language = {eng},
number = {3},
pages = {279-289},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Li-Yorke pairs of full Hausdorff dimension for some chaotic dynamical systems},
url = {http://eudml.org/doc/38130},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Neunhäuserer, J.
TI - Li-Yorke pairs of full Hausdorff dimension for some chaotic dynamical systems
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 3
SP - 279
EP - 289
AB - We show that for some simple classical chaotic dynamical systems the set of Li-Yorke pairs has full Hausdorff dimension on invariant sets.
LA - eng
KW - Li-Yorke chaos; Hausdorff dimension; Li-Yorke chaos; Hausdorff dimension
UR - http://eudml.org/doc/38130
ER -

References

top
  1. Blanchard, F., Glasner, E., Kolyada, S., Maass, A., On Li-Yorke pairs, J. Reine Angew. Math. 547 51-68 (2002). (2002) Zbl1059.37006MR1900136
  2. Blanchard, F., Huang, W., Snoah, L., 10.4064/cm110-2-3, Colloquium Mathematicum 110 293-361 (2008). (2008) MR2353910DOI10.4064/cm110-2-3
  3. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, Wiley, New York (1990). (1990) Zbl0689.28003MR1102677
  4. Hutchinson, J. E., 10.1512/iumj.1981.30.30055, Indiana Univ. Math. J. 30 271-280 (1981). (1981) Zbl0598.28011MR0625600DOI10.1512/iumj.1981.30.30055
  5. Katok, A., Hasselblatt, B., Introduction to Modern Theory of Dynamical Systems, Cambridge University Press (1995). (1995) MR1326374
  6. Li, T.-Y., Yorke, J. A., 10.2307/2318254, Amer. Math. Monthly 82 985-992 (1975). (1975) Zbl0351.92021MR0385028DOI10.2307/2318254
  7. Marstrand, J. M., 10.1017/S0305004100029236, Proc. Camb. Philos. Soc. 50 198-202 (1954). (1954) Zbl0055.05102MR0060571DOI10.1017/S0305004100029236
  8. Moran, P., Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc. 42 15-23 (1946). (1946) Zbl0063.04088MR0014397
  9. Neunhäuserer, J., 10.1088/0951-7715/15/4/315, Nonlinearity 15 1299-1307 (2002). (2002) Zbl1148.37300MR1912296DOI10.1088/0951-7715/15/4/315
  10. Neunhäuserer, J., 10.1142/S0218348X07003423, Fractals 15 63-72 (2007). (2007) MR2281945DOI10.1142/S0218348X07003423
  11. Pesin, Ya., Dimension Theory in Dynamical Systems---Contemplary Views and Applications, University of Chicago Press (1997). (1997) MR1489237
  12. Smale, S., 10.1090/S0002-9904-1967-11798-1, Bull. Amer. Math. Soc. 73 747-817 (1967). (1967) Zbl0202.55202MR0228014DOI10.1090/S0002-9904-1967-11798-1
  13. Young, L.-S., Dimension, entropy and Lyapunov exponents, Ergodic Theory Dyn. Syst. 2 109-124 (1982). (1982) Zbl0523.58024MR0684248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.